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Abstract

The ability to perform radiation transport computations in stochastic media is essential

for predictive capabilities in applications such as weather modeling, radiation shielding

involving non-homogeneous materials, atmospheric radiation transport computations,

and transport in plasma-air structures. Due to the random nature of such media, it

is often not clear how to model or otherwise compute on many forms of stochastic

media. Several approaches to evaluation of transport quantities for some stochastic

media exist, though such approaches often either yield considerable error or are quite

computationally expensive. We model stochastic media using the Karhunen-Loève (KL)

expansion, seek to improve efficiency through use of stochastic collocation (SC), and

provide higher-order information of output values using the polynomial chaos expansion

(PCE). We study and demonstrate method convergence and apply the new methods to

both spatially continuous and spatially discontinuous stochastic media. New methods

are shown to produce accurate solutions for reasonable computational cost for several

problem when compared with existing solution methods.

Spatially random media are modeled using transformations of the Gaussian-distributed

KL expansion–continuous random media with a lognormal transformation and discon-

tinuous random media with a Nataf transformation. Each transformation preserves

second-order statistics for the quantity–atom density or material index, respectively–

being modeled. The Nyström method facilitates numerical solution of the KL eigen-

values and eigenvectors, and a variety of methods are investigated for sampling KL

eigenfunctions as a function of solved eigenvectors. The infinite KL expansion is trun-

cated to a finite number of terms each containing a random variable, and material

realizations are created by either randomly or deterministically sampling from the ran-

dom variables. Deterministic sampling is performed with either isotropic or anisotropic

stochastic collocation (SC), the latter of which takes advantage of the monotonic decay

of KL terms. Transport quantities are solved on realizations using Monte Carlo particle

transport with Woodcock sampling (WMC). Surrogate models of system responses are

constructed from SC solutions using the polynomial chaos expansion (PCE) from which

probability density functions (PDFs) of response quantities are constructed. The error

convergence of solution methods is examined as a validation of the choice of methods, a

verification of method implementation, and to give insight towards parameter selection

for efficient computation. Solutions are compared against benchmark values generated

in a variety of ways including analytic solutions, computational solutions of simpler

models, expensive benchmark computations, and published benchmark values.
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Chapter 1

Introduction

Modeling and computation of physical systems involving at least one uncertain param-

eter provides a unique challenge: how to characterize the effects of uncertainty in the

input on uncertainty in the outputs of interest. A particularly challenging form of uncer-

tain input is that for which system properties are variable as a function of physical space.

For example, radiation calculations involving planetary and stellar atmospheres are per-

formed in a system for which nuclear material properties vary greatly as a function of

gas density, a quantity constantly in flux and often varying in non-predictable ways.

Materials used in radiation shielding, such as concrete, are often comprised of multiple

materials with no clear structure for mixing such that the dose received on the “safe”

side is variable. Understanding of such variability can ensure safety, cost-effectiveness,

and at times may determine design feasibility. Inertial confinement fusion relies on a

precise knowledge of the implosion properties of fuel pellets while being compressed by

photon beams; the level of knowledge of the effects of randomly mixed plasma and gas

on photon beams during implosion greatly affects yield of the induced fusion and may be

the difference in meeting yield goals. The challenge of radiation transport computations

in stochastic media also occurs in scenarios such as nuclear reactor fuel, Boiling Water

Reactor moderators, and meteorological modeling of sunlight through clouds.

Several qualities are desirable in solution methods of the stochastic transport equation,

especially accuracy and efficiency, though further qualities like higher-order characteriza-

tion of output values, the ability to estimate solution error, and the ability to generalize

to other statistical mixings or multiple dimensions are valuable. A most basic approach

1
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to characterization of transport quantities in stochastic media is to assume the material

is mixed homogeneously, or equivalently that mixing is on a very small (atomic) scale.

This “atomic mix” (AM) approach is efficient, requiring the solution of only one basic

transport equation, but only accurate in special cases such as highly scattering media

or extremely fine material mixing [1, 2]. In addition, it provides no information on the

spread of resulting transport quantities–only a mean value–and no estimate of the error

in that mean. Another approach is to describe the stochastic transport equation as

a system of coupled equations representing various material property states. Such an

approach for spatially discontinuous materials with Markovian statistical mixing is the

Levermore-Pomraning (LP) closure [1–4]. The closure is computationally cheap, exact

in purely scattering materials, and generally more accurate than the atomic mix ap-

proximation. The method can produce higher-order information on transport quantity

responses, though an additional closure on the system of equations is required introduc-

ing additional error [5, 6]. The method provides no effective means for estimating output

error. A more reliable, but expensive, approach is to sample from possible realizations

of stochastic media many times [1, 2]. This method, often used as a benchmark solution,

provides values for all moments of desired output values and allows for the construction

of output probability density functions (PDFs) with a number of entries equal to the

number of transport computations run. Convergence of values can be characterized and

therefore the remaining error estimated. This method requires, however, knowledge of

how to create realizations of stochastic media. In some cases, such as spatially discon-

tinuous stochastic media with Markovian mixing, methods are known for construction

of realizations [1, 2], whereas in other cases such as spatially discontinuous stochastic

media with other statistical mixing or spatially continuous stochastic media, it may not

be known how to construct realizations.

We present use of the Karhunen-Loève (KL) expansion [7–9] for modeling spatially con-

tinuous stochastic media (using a lognormal transformation [10]) and a related method

for modeling spatially discontinuous stochastic media (using a Nataf transformation [11–

13]), each utilizing the Nyström method [14, 15] for numerical solution KL quantities,

that seeks to perform better across method goals than existing methods. The only

fundamental assumption of the method limiting its accuracy–one introduced through

the second-order nature of the KL expansion [9]–is the assumption that the stochastic

media can be well represented through its second-order statistics: mean, variance, and
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autocovariance. The method seeks to be efficient through smart choice of KL expan-

sion truncation level and use of a deterministic sampling method, stochastic collocation

(SC) [10, 16, 17], over the uncertain domain. Efficiency is further improved through

use of anisotropic collocation orders by resolving the effects of weightier KL terms more

than those less weighty [17]. The method solves an arbitrary number of moments of

output values and creates a polynomial chaos expansion (PCE) model [18–21] of the re-

sponse that, once constructed, can be sampled from cheaply to provide PDFs of output

values [10, 22]. Method error convergence can be tracked allowing an estimation of the

error of output quantities. We have only applied the methods to stochastic media with

exponential covariance functions in a one-dimensional physical domain in this work, but

the method lends to extension in modeling of materials with non-exponential covariance

functions and application in multi-dimensional physical domains.

The rest of the dissertation is organized as follows:

• Chapter 2: Introduction to the stochastic transport equation and Monte Carlo

(MC) particle transport techniques for solving transport quantities on material

realizations

• Chapter 3: Discussion of reduced-order methods including the Karhunen-Loève

(KL) expansion, random sampling (RS), stochastic collocation (SC), and the poly-

nomial chaos expansion (PCE)

• Chapter 4: Establishment of an error analysis framework and demonstration of the

framework on a stochastic transport problem with random nuclear cross section

values and deterministic material boundaries

• Chapter 5: Use of a lognormal transformation of the KL expansion to model

spatially continuous random media

• Chapter 6: Use of a Nataf transformation of the KL expansion to model spatially

discontinuous random media

• Chapter 7: Conclusions and future work

• Appendices A-D: Generation of Gaussian-distributed random samples, use of nu-

merical quadrature, discussion of orthogonal polynomials, and an example bench-

mark value generation script
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Chapter 2

Problem Statement and

Transport Methods

In this chapter the stochastic transport equation is described along with a solution

method for deterministic realizations of the equation. The stochastic transport equation

is first discussed along with quantities of interest in this work. Three different sources of

uncertainty within this equation are described. The solution method used in this work

for deterministic realizations of the stochastic transport equation, the Monte Carlo (MC)

method of particle simulation, is then discussed. The discussion includes a description of

MC computational mechanics, MC tallies and statistics, and a rejection method called

Woodcock Monte Carlo (WMC).

2.1 Random Transport Equation

The stochastic, one-dimensional, mono-energetic, neutral-particle, steady-state, and

isotropically scattering transport equation that we will focus on is written:

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω), (2.1a)

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1, (2.1b)

where µ = cos(θ) is the cosine of the angle of particle travel with respect to the for-

ward direction, ω represents one realization stochastic domain, Σt(x, ω) and Σs(x, ω)

4
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are the total and scattering stochastic macroscopic nuclear interaction cross sections,

and ψ(x, µ, ω) is the spatially, angularly, and stochastically dependent response func-

tion known as angular particle flux. The nuclear cross sections Σt(x, ω) and Σs(x, ω)

are sources of randomness and ψ(x, µ, ω) is the random response. The spatial domain

extends from the “left” boundary of x = 0 to the “right” boundary of x = L. In the

one-dimensional “slab” geometry used in this work, direction of particle travel spans

µ ∈ [−1, 1]. Depending on the application, “isotropic source” boundary conditions–

ψ(0, µ) = 2, µ > 0; ψ(L, µ) = 0, µ < 0 (2.2)

–or “beam source” boundary conditions–

ψ(0, µ) = δ(µinc − µ)/µinc, µ > 0; ψ(L, µ) = 0, µ < 0 (2.3)

–are chosen. Isotropic source boundary conditions (Eq. (2.2)) impose an isotropically

distributed source of strength two. Beam source boundary conditions (Eq. (2.3)) impose

a source of strength 1
µinc

at incident angle µinc. Each set of boundary conditions produces

an incident current of magnitude one. Both sets of boundary conditions impose a vacuum

condition on the right boundary such that no particles enter the problem from this

domain boundary. Both sets of boundary conditions implicitly enforce that any particles

traveling out of the domain are lost to the system. We assume the incident boundary

source to be nonrandom.

In addition to using the angular particle flux ψ(µ, x, ω) as the quantity of interest (QoI)

we are interested at various times in either of two QoIs derived from this response

function: scalar particle flux φ(x, ω) and particle current J(x, ω). The scalar flux is the

particle flux irrespective of, or integrated over, direction of particle travel:

φ(x, ω) =

∫ 1

−1
dµ′ψ(x, µ′, ω). (2.4)

Scalar flux is of interest since many other quantities are independent of the direction

of particle travel and can be derived from the scalar flux. Additionally, various ap-

proximations and acceleration methods to particle transport problems take advantage

of the reduced dimensionality of the scalar flux. The net particle current is the net flux
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traveling normally incident through a surface:

J(x, ω) =

∫ 1

−1
dµ′µ′ψ(x, µ′, ω). (2.5)

The net current can be split into the partial currents traveling in each direction through

a surface:

J(x, ω) = J+(x, ω)− J−(x, ω), (2.6)

where the superscripts “+” and “−” denote the right and left direction of particle travel.

These particle currents are more fully described as

J+(x, ω) =

∫ 1

0
dµ′µ′ψ(x, µ′, ω); J−(x, ω) =

∫ 0

−1
dµ′
∣∣µ′∣∣ψ(x, µ′, ω). (2.7)

In this work we will use ϕ to refer to an arbitrary quantity of interest. The QoI in this

work is always derived from the response of Eq. (2.1): ψ(x, µ, ω).

Both sets of boundary conditions, Eq. (2.2) and Eq. (2.3), impose an incoming particle

current on the left boundary of the slab equal to one, J+(0, ω) = 1, and an incoming

particle current on the right boundary of the slab equal to zero, J−(L, ω) = 0.

2.2 Types of Random Media

In all problem types we investigate, the uncertainty in Eq. (2.1) originates in the macro-

scopic nuclear cross sections Σr(x, ω), where “r” is either equal to “t” for total cross

section or “s” for scattering cross section. Non-stochastic macroscopic nuclear cross

sections Σr(x) are calculated as the product of material atom density Nat(x)–equal to

the material density ρ(x) times Avogadro’s Constant NA divided by gram atomic weight

M(x)–and microscopic cross section σr(x), vis.,

Σr(x) = Nat(x)σr(x). (2.8)

We investigate three unique stochastic transport problems based on uncertainty origi-

nating in cross sections Σr(x, ω).

Random variables ξ = {ξ1, . . . , ξD} map the stochastic event space, of which ω is one

event, to a measurable stochastic space ξ(ω) such that one value of ω corresponds to a set
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of values for all random variables ξ. The general expression for stochastic macroscopic

cross section “r” may then either be written Σr(ω), Σr(ξ(ω)), or Σr(ξ).

In the first problem type we investigate geometric boundaries and densities for materials

are known a priori, but the value of at least one macroscopic cross section for at least one

material is uncertain and varied according to independent uniformly distributed random

variables:

Σr(x, ω) = Σr(x, ξ(ω)), ξn ∈ U(−1, 1) ∀ n. (2.9)

One application of this problem type is quantifying the effects of experimentally deter-

mined microscopic cross sections in which, for many cross sections, there is great un-

certainty. The microscopic cross sections are often assumed to be Gaussian distributed,

though this distribution is chosen somewhat arbitrarily, and the methods examined here

can also be performed using Gaussian distributions for the uncertain variables. We

investigate modeling and transport through this type of random media in Chapter 4.

The second type of random media we investigate involves continuously varying uncer-

tainty material densities:

Σr(x, ω) = Nat(x, ξ(ω))σr(x), ξn ∈ N (0, 1) ∀ n. (2.10)

Material density is taken to vary continuously through the slab geometry and is modeled

using a transformation of the Karhunen-Loève expansion in which the random variables

are Gaussian distributed. Applications of this problem type include transport calcu-

lations in fluid density fluctuations such as those in the atmosphere. We investigate

modeling and transport through this type of random media in Chapter 5.

The last type of random media we investigate involves two materials which are discon-

tinuously mixed over the physical domain and for which the boundaries between the

materials are located randomly. Uncertainty originates in material interface locations x,

such that for each material z macroscopic cross sections are deterministic:

Σr(x, ω) = Σr,z(x,ξ(ω)), z ∈ {0, 1}, ξn ∈ N (0, 1), ∀n. (2.11)

Material index z is a random process modeled using a transformation of the Karhunen-

Loève expansion with Gaussian random variables. We focus our investigation on binary,

Markovian-mixed materials in which two materials have clearly defined average chord
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lengths, vis., Λz, z ∈ {0, 1}, and individual chord lengths λz are distributed according

to the exponential distribution:

p(λz)dλz =
1

Λz
exp

[
−λz
Λz

]
dλz. (2.12)

This sub-class of spatially discontinuous random media is of interest in applications such

as pebble-bed nuclear reactors, photon transport through turbulently mixed materials

in laser fusion experiments, photon transport through clouds, and neutron transport in

mixtures of water and air in boiling water reactors. We limit investigation of spatially

discontinuous random media to binary materials with Markovian mixing statistics here,

but develop numerical methods which allow the modeling of spatially discontinuous

random media obeying other statistical models as well. We investigate modeling and

transport through this type of random media in Chapter 6.

2.3 Radiation Transport Solver Method: Monte Carlo (MC)

Transport

In this section we discuss the use of Monte Carlo particle simulation to solve quantities

of interest on realizations of the stochastic transport equation. The radiation transport

equation is typically solved for the expectation value of particle flux using either deter-

ministic solvers such as finite elements methods, or using the Monte Carlo method of

particle simulation (MC) through random sampling. Though random sampling in the un-

certain domain and the differential equation solution method through random sampling

of particle tracks are each appropriately called a Monte Carlo method [23], for clarity

we will restrict usage of the title “Monte Carlo” in this work to the second–Monte Carlo

sampling of particle tracks–and refer to the first simply as “random sampling” (RS).

Woodcock sampling is an extension of the Monte Carlo method of interest in this work.

We will refer to Monte Carlo particle simulation using Woodcock sampling as Woodcock

Monte Carlo (WMC), and discuss it further in Section 2.3.4.

Monte Carlo transport is a method which samples from terms of the Neumann expansion

of the second-kind, Fredholm-type integral equation form of the transport equation [24,

25]. The effects of operations such as particle streaming and particle scattering are

represented by terms which can be sampled from in the Neumann series. Individual
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particle histories are simulated by sampling successively against these terms to “advance”

a particle through a series of operations characterized by a Markov process of state

changes. Though rigorously the Monte Carlo method samples against terms of the

Neumann expansion of the integral form of the transport equation, a non-rigorous but

possibly more intuitive way to think of the function of individual sampling operations

is presented in the following sections, based on the differential form of the transport

equation.

We discuss the theory of the Monte Carlo particle transport method briefly; more de-

tailed accounts can be found in books such as Refs. [24–26].

2.3.1 Monte Carlo Particle Simulation Mechanics

Here we describe Monte Carlo transport through a realization of the stochastic, one-

dimensional, mono-energetic, neutral-particle, steady-state, and isotropically scattering

transport equation:

µ
∂ψ(x, µ)

∂x
+Σt(x)ψ(x, µ) =

Σs(x)

2

∫ 1

−1
dµ′ψ(x, µ′), (2.13a)

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1, (2.13b)

with appropriate boundary conditions, e.g., Eq. (2.2) or Eq. (2.3). Particle histories

are instantiated according to a source term in the equation, in our cases in the left

incident boundary condition, and are simulated according to system probabilities defined

by macroscopic cross section values. Before a simulation, “tallies” are set such that

events of interest, contributing to any quantities of interest (QoIs), are tallied during the

simulation. These tallies are then used to calculate the defined QoIs through statistical

analysis.

2.3.1.1 Particle Instantiation

Particle histories are instantiated according to whatever source term(s) are present in

the transport equation. In our problems, particles begin according to the left boundary

condition in Eq. (2.2) or Eq. (2.3). A new particle history’s position is assigned as xi = 0.

In the case of an isotropic boundary source, as in Eq. (2.2), the initial particle angle
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of travel (µi) is set equal to the square root of a pseudo-random number (η) sampled

from a uniform distribution between 0 and 1, µi =
√
η, η ∈ U(0, 1). This results from

choosing a constant flux in each direction,

ψ(µi) = 2 =
2

µi
J(µ) ∴ J(µ) = µi, (2.14)

and sampling µi pseudo-randomly against the cumulative density function of J(µ):

η =

∫ µi
0 J(µ)dµ∫ 1
0 J(µ)dµ

=

∫ µi
0 µdµ∫ 1
0 µdµ

=
[µ2/2]µi0

[µ2/2]10
= µ2

i → µi =
√
η. (2.15)

The direction of particle travel has been restricted to traveling “rightward”, since “left-

ward” particles on the left slab boundary would not enter the slab. In the case of a

beam boundary source, as in Eq. (2.3), the current particle angle of travel (µi) is set

equal to the incident angle of the beam: µi = µinc.

2.3.1.2 Particle Streaming Operator

The first operation after instantiation of a particle history is a streaming operation

in which the particle position is advanced from the now previous position xi−1 to the

new position xi. The streaming operation samples a distance to collision and computes

the distance to the nearest boundary, selecting to stream the particle the smaller of

these two distances from the current position. Though the rigorous mathematical basis

for this sampling method comes from the Neumann expansion of the integral form of

the transport equation, the streaming operation can be viewed as an evaluation of the

streaming and collision terms of the transport equation (Eq. (2.13)):

µ
∂ψ(x, µ)

∂x
+Σt(x)ψ(x, µ) = 0. (2.16)

In a streaming operation, a particle advances from position xi−1 to position xi = xi−1 +

µi−1x̂i, where x̂i is the distance the particle traveled. In a traditional approach to

sampling the distance a particle streams during event i, a constant total cross section is

required over the flight path of the particle history, vis., Σt = Σt(x) ∀ x ∈ [xi−1, xi]. The

probability of non-interaction from xi−1 to xi is equal to exp[−Σtx̂i], and the differential

probability of interaction is Σtdx̂i [26], such that the probability of a particle at xi−1
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traveling distance x̂ is

f(x̂)dx̂ = Σt exp[−Σtx̂]dx̂. (2.17)

From a pseudo-random η ∈ U(0, 1) a distance to collision value dc is solved by integrating

to create a cumulative probability distribution:

η = F (dc) =

∫ dc

0
Σt exp[−Σtx̂′]dx̂′. (2.18)

The distance to collision dc is solved and, noting that 1 − η and η share the same

distribution, the former is replaced with the latter to minimize computational effort:

dc = − ln(1− η)

Σt
= − ln(η)

Σt
. (2.19)

After sampling a distance to collision dc, distance to the nearest boundary along the

flight path db is calculated. A boundary can be the point along the flight path for which

the total cross section is no longer constant such as a domain boundary, a material

interface, or an imposed boundary meant for purposes such as collecting tallies. The

new particle position xi is then chosen according to the distance which is most limiting:

xi = xi−1 + µi−1x̂i, x̂i = min(db, dc). (2.20)

While the angle of particle travel is not changed, vis., µi = µi−1, any tallies pertaining

to the advancement of the particle history from xi−1 to xi are taken and the next

operation for the particle is evaluated. If the particle reached an imposed boundary,

a new streaming operation is performed with the same macroscopic cross sections. If

the particle reached a location at which the macroscopic cross sections change, a new

streaming operation is performed with the now local macroscopic cross section values.

If the particle reached a physical domain boundary, the particle history is terminated

and a new one is instantiated, beginning a new particle history. If the particle reached

a collision event, a collision operation is performed.
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2.3.1.3 Particle Collision Operator

A collision operation occurs after a streaming operation has resulted in the choice of

a collision event. The collision operation determines what type of collision event the

particle will undergo. In our simple physics, the two outcomes are either particle ab-

sorption or scattering. If the particle scatters, this operation will select a new direction

of particle travel. The mathematical basis for this operation is a sampling from terms

in the Neumann expansion of the integral form of the transport equation, though a

comparison of the collision and scattering terms in Eq. (2.13) may add intuition:

Σt(x)ψ(x, µ) =
Σs(x)

2

∫ 1

−1
dµ′ψ(x, µ′) ⇒ ψ(x, µ) =

Σs(x)

Σt(x)

1

2

∫ 1

−1
dµ′ψ(x, µ′). (2.21)

To evaluate this relationship, a pseudo-random number η ∈ U(0, 1) is compared against

the local scattering ratio c(xi) = Σs(xi)/Σt(xi) to determine if a particle is absorbed

or scattered. In either case the particle position remains unchanged, vis., xi = xi−1. If

the particle is determined to be absorbed, η > c(xi), any appropriate tallies are taken

and the particle history is terminated. If the particle is determined to be scattered,

η < c(xi), the particle survives and a new particle direction µi is sampled, evaluating

the integral in Eq. (2.21).

Since our scattering physics is chosen to be isotropic, the new direction of particle travel

is simply chosen using another pseudo-random number:

µi = 2η − 1, η ∈ U(0, 1). (2.22)

Any appropriate tallies are taken and a new streaming operation begins based on the

current position xi and direction µi of particle travel.

2.3.2 Monte Carlo Particle Simulation Tallies

We calculate three different types of quantities of interest (QoIs) in our one-dimensional

geometry using Monte Carlo particle simulation tallies. For each tally type we typically

tally both the QoI and its square over each history. This information is sufficient to

yield a sample mean and standard deviation for the tally. We calculate current over a

surface at point x, J+(x) or J−(x), scalar flux over a surface at point x, φ(x), and scalar
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flux over a cell defined between xj and xj+1, φj = φ(xj , xj+1). Here we briefly discuss

each.

For all three tally types defined here, we must sum the contributions from each tally event

for each particle history. Since we have only utilized current tallies on the boundaries of

the domain, each of our current tallies is only able to have one tally event per particle

history. If there was a possibility of more than one tally event per particle history for

our current tallies, they would require summing over the tally events in each particle

history. Examples of such multiple tally events would be particles crossing a surface

heading in the forward or backward direction more than once or multiple tallies per

particle history arising from secondary particles.

2.3.2.1 Boundary Current Tallies

We calculate the total current over a boundary at x headed in either the positive-

facing direction µ > 0 on the right boundary of the slab, J+(L), or the negative-facing

direction µ < 0 on the left boundary of the slab, J−(0). These quantities are called the

transmittance

T = J+(L) (2.23)

and reflectance

R = J−(0), (2.24)

respectively. Since particles which exit the slab are lost to the system and our physics

does not include secondary particles, each particle history can contribute a tally of

either 0 or 1 to each of these leakage current tallies. We tally the number of particle

histories which end in a transmittance or reflectance event and divide by the number of

particle histories simulated to calculate the mean and second moment of transmittance

and reflectance:

〈
T
〉

=
〈
T 2
〉

=
N+
te (L)

N
, (2.25a)〈

R
〉

=
〈
R2
〉

=
N−te (0)

N
, (2.25b)

where N±te (x) is the number of transmittance or reflectance tally events. Since each tally

has a value of 1, the sample mean and second moment of the current are the same.
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2.3.2.2 Surface Flux Tallies

We calculate the flux on a surface at point x in a similar manner as we calculate current,

but we care about the direction of travel of the particles crossing the surface. To calculate

statistics on flux values we must calculate first and second moments separately. Each

time a particle crosses a surface, we call this a tally event and tally the absolute value

of the inverse of the direction of particle travel, |µ−1
nte
|. We sum all tally events for each

tally on each particle history. We use this sum to find the sample mean and second

moment of the flux at a surface located at x:

〈φ(x)〉 =
1

N

N∑
n=1

(∑
nte

1

|µnte |

)
n

; 〈φ2(x)〉 =
1

N

N∑
n=1

(∑
nte

1

|µnte |

)2

n

. (2.26)

This flux estimator is unbounded: as µ → 0, 1
|µnte |

→ ∞. We have not addressed the

unbounded nature of the surface flux estimator in any special way. Though we are

not aware of skewed statistics in any of our tallies due to this unbounded estimator, we

cannot rule out the possibility with the current implementation. One common treatment

of this phenomenon, as discussed in Dupree and Fraley [25], is to supply a value ε such

that any surface flux tally made by a particle traveling at a direction |µ| < ε is accounted

for as traveling at some averaged value |µ|. A permutation on this approach is to simply

disregard any tallies for particles with direction |µ| < ε.

2.3.2.3 Cell Flux Tallies

We calculate the flux in cell j using track-length estimators. A particle’s track-length is

calculated as the absolute value of a particle’s change in x over a streaming operation

from xi−1 to xi divided by the direction of particle travel for that streaming operation:

x̂i =

∣∣∣∣xi − xi−1

µi−1

∣∣∣∣ . (2.27)

We calculate the flux sample mean and second moment in cell j by tallying the sum of

the track-lengths from all tally events in cell j for a history and that quantity’s square.
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We then divide by the number of particle histories simulated and the size of the cell:

〈φj〉 =
1

xj+1 − xj
1

N

N∑
n=1

(∑
nte

x̂i,nte

)
n

; 〈φ2
j 〉 =

1

xj+1 − xj
1

N

N∑
n=1

(∑
nte

x̂i,nte

)2

n

.

(2.28)

We note that the computation of x̂i using Eq. (2.26) includes the potential to divide

by zero or a number very close to zero. This can cause computational errors and may

cause Eq. (2.28) to be unbounded. Though we are not aware of use of Eq. (2.27) having

caused any issues in our computations, it is possible. A simple solution to this problem

is to use x̂i as calculated by the minimum of the distance to boundary and distance to

collision as in Equation 2.20 instead of computation of x̂i as calculated in Equation 2.27.

The subtle, but important, difference in the two approaches is that use of Eq. (2.20)

does not require division, and thus cannot require division by zero or a number close to

zero.

When using cell flux tallies, we allocate track-length tally events to cells in one of

two ways. In one approach, we allocate a tally event to each cell in which a particle

track-length traveled with a magnitude equal to the distance traveled while in that cell.

This is probably the most intuitive method. In another approach we allocate one tally

event per track-length to one of the cells over which the track-length spanned, and

contribute the full magnitude of the distance traveled to that cell. The cell is chosen

by statistically sampling from the cells over which the track-length spanned according

to the relative distances traveled in each cell. Fully converged, these two methods are

equivalent. The first method is likely to converge a tally to a smaller error for the same

number of particles simulated N , but the second method simulates each particle with

less computational effort. It is difficult to know a priori which is more efficient.

2.3.3 Monte Carlo Tally Statistics

We have demonstrated calculation of a quantity of interest’s sample mean and second

moment, 〈ϕ〉 and 〈ϕ2〉, using tallies in Section 2.3.2. Here we briefly discuss batch

statistics and demonstrate use of these quantities for calculation of the sample mean,

standard deviation, and standard error of the mean of a quantity of interest ϕ.

Sometimes in Monte Carlo particle simulation implementations, batches are used in

which a collection of particle histories provides sample values for a tally and the following
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statistical procedures are performed over batch values. Using batch tally values instead

of history tally values can reduce computational effort for tally statistics and provides a

natural point for parallel code synchronization. Our implementation does not use batch

statistics but performs the statistical analysis for a tally directly on quantities arising

from individual particle history tallies. Performing statistics over particle histories can

be viewed as using batch statistics with a batch size of one particle history; Eqs. (2.26)

and (2.28) solve batch statistical quantities if index n sums over N batches and all tally

events nte for every particle history in each batch are summed. Eq. (2.25) could be

similarly reformatted.

In Section 2.3.2 we calculated the sample mean and second moment of QoIs according

to

〈ϕ〉 =
1

N

N∑
n=1

ϕn; 〈ϕ2〉 =
1

N

N∑
n=1

ϕ2
n, (2.29)

where ϕn was the sum of all tally events for a QoI in particle history n. We have already

attained the sample mean, 〈ϕ〉, but now use the sample mean and second moment of ϕ

to calculate the sample standard deviation and standard error of the mean.

The sample variance of ϕ is

s2
ϕ =

1

N − 1

N∑
n=1

(ϕn − 〈ϕ〉)2 (2.30a)

=
1

N − 1

[
N∑
n=1

ϕ2
n − 2〈ϕ〉

N∑
n=1

ϕn +
N∑
n=1

〈ϕ〉2
]

(2.30b)

=
1

N − 1

[
N∑
n=1

ϕ2
n − 2N〈ϕ〉2 +N〈ϕ〉2

]
(2.30c)

=
N

N − 1

[
1

N

N∑
n=1

ϕ2
n − 〈ϕ〉2

]
(2.30d)

=
N

N − 1

[
〈ϕ2〉 − 〈ϕ〉2

]
. (2.30e)

It is clear from Eqs. (2.29) and (2.30e) that the sample standard deviation sϕ for any

QoI is calculable from nothing more than the sum of tallies for a quantity and the sum

of the square of tallies for the quantity across particle histories. This is convenient

computationally and as a result the sum of a tally and the sum of squares of the tally

are often all that is stored in computer memory for a given tally.
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Following the Central Limit Theorem, the sample standard error of the mean s〈ϕ〉 is

calculated

s〈ϕ〉 =
sϕ√
N
. (2.31)

The sample standard error of the mean, using N samples from the population, provides,

with about 68% confidence, that the true mean of the sample is within a standard error

of the mean from the mean.

In the case that tallies contain only values of either 0 or 1, the second moment need not

be tallied to calculate the solution standard deviation or standard error of the mean.

Each solution value is equal to its square, ϕi = ϕ2
i , such that the first and second

moments are equal: 〈ϕ〉 = 〈ϕ2〉. Calculation of standard devation (and thus standard

error of the mean) thus only requires tallying of the first moment:

s2
〈ϕ〉 =

N

N − 1

[
〈ϕ〉 − 〈ϕ〉2

]
. (2.32)

2.3.4 Woodcock Monte Carlo (WMC)

Woodcock sampling is a rejection method developed within Monte Carlo particle sim-

ulation which allows for sampling a distance to collision dc (Eq. (2.19)) over a portion

of a problem domain in which the macroscopic total cross section Σt(x) in that por-

tion of the domain need not be constant. Woodcock sampling is sometimes also called

“delta-tracking” or “pseudo-scattering-tracking”. We will call evaluation of Monte Carlo

particle simulation using Woodcock sampling simply Woodcock Monte Carlo (WMC).

Woodcock Monte Carlo was developed to reduce the runtime required in a multi-D

Monte Carlo simulation problem by allowing particle tracks to stream over potentially

many material interfaces before requiring the often expensive calculation of determining

which material cell the particle track is in [27, 28]. WMC was more mathematically-

rigorously presented soon thereafter [29, 30], then extended for application involving

spatially continuously varying macroscopic total cross sections [31].

There seems to be renewed interest in WMC in recent years: WMC is an option in several

production-level Monte Carlo codes including MONK and MCBEND [32], MORET

5 [33], and Serpent 2 [34]. Schemes involving when and how to implement WMC for

greatest efficiency have been investigated [33–39], and when implemented effectively
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WMC can show significant computational savings over the more traditional approach to

MC. For at least one modern problem, application of WMC without any special schemes

has yielded significantly more efficient Monte Carlo transport results than MC without

Woodcock sampling [40].

Woodcock Monte Carlo is our method of choice for handling Monte Carlo transport

over spatially continuous cross sections, though other options exist. In the early 2000’s

Brown and Martin [41, 42] proposed a method of sampling optical depth, rather than

distance to collision, by integrating total cross section seen by the particle. Though

accurate, this method provides implementation challenges, i.e., the total cross section

field must be known well enough to integrate to a value. At best this is little more than

a minor modification of Eq. (2.18). At worst it requires a transcendental solve for the

optical thickness to be traveled by a particle, which is computed numerically over values

that must be extracted from a multi-D geometry.

Another option is to discretize the domain into cells for which an average total cross

section value is solved in each bin. Distance to collision operations can then be per-

formed over each bin. Alternatively, the optical thickness traveled can be sampled and

the distance to collision computed using the discrete total cross section values over po-

tentially many cells. In either of these approaches, discretizing spatially introduces an

avoidable discretization error. In the first, many small cells, requiring many streaming

operations which almost always end in the particle streaming through the cell, make the

MC simulation process computationally inefficient. Whereas the optical thickness eval-

uation over a grid reduces the computational burden, it still requires summing optical

thickness over cells, requires a way to average cross section values over the local cell,

and introduces a discretization error.

2.3.4.1 WMC Formulation

Woodcock Monte Carlo adds a fictitious macroscopic total cross section Σ∗t to the trans-

port equation (Eq. (2.13)):

µ
∂ψ(x, µ)

∂x
+
Σt(x)

Σ∗t
Σ∗t ψ(x, µ) =

Σs(x)

2

∫ 1

−1
dµ′ψ(x, µ′), (2.33a)

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1, (2.33b)



www.manaraa.com

Chapter 2. Problem Statement and Transport Methods 19

again with appropriate boundary conditions, e.g., Eq. (2.2) or Eq. (2.3). This ficti-

tious cross section is sometimes also referred to as the “ceiling”, “delta-scatterer”, or

“majorant” cross section, though we will simply call it the fictitious total cross section.

In our implementation we have chosen Σ∗t as the maximum total cross section from a

particle’s current position xi to the end of the slab in the direction of particle travel.

The simplest implementation would be to choose Σ∗t as the maximum total cross section

over the entire slab; we have chosen to reduce the frequency of interaction rejection by

choosing Σ∗t only as a function of the total cross section values a particle may interact

with for a given particle flight. Since the fictitious cross section need only be equal to

or larger than the total cross section for a given particle flight path, we could further

reduce rejection frequency by smartly imposing boundaries to each particle flight path.

Some have investigated savings through such imposed boundaries [34, 37, 38].

2.3.4.2 WMC Mechanics: Modified Streaming Operator

Woodcock sampling is a modification of the particle streaming operation (Section 2.3.1.2).

The mathematical basis for evaluating all Monte Carlo operations in the Monte Carlo

method is a sampling against terms of the Neumann series of the integral form of the

transport equation, though it may add intuition to think of WMC as a sampling of the

streaming operation governed by

µ
∂ψ(x, µ)

∂x
+
Σt(x)

Σ∗t
Σ∗t ψ(x, µ) = 0. (2.34)

When using Woodcock sampling in Monte Carlo transport operations, a distance to

potential collision d∗c is sampled. This operation can be thought of as an evaluation of

µ
∂ψ(x, µ)

∂x
+Σ∗t ψ(x, µ) = 0, (2.35)

and d∗c is sampled according to

d∗c = − ln(η)

Σ∗t
, η ∈ U(0, 1). (2.36)



www.manaraa.com

Chapter 2. Problem Statement and Transport Methods 20

The particle is advanced to a new position xi:

xi = xi−1 + µi−1x̂i, x̂i = min(db, d
∗
c). (2.37)

Any tallies pertaining to the advancement of the particle history from xi−1 to xi are

taken.

If the distance to potential collision d∗c was the limiting factor in determining the length

of the particle flight x̂i, vis., x̂i = d∗c , the ratio between the macroscopic total cross

section and the fictitious total cross section governs whether the potential collision event

becomes a collision event or a streaming event. If a newly chosen pseudo-random number

η ∈ U(0, 1) is less than the ratio of the total cross section to the fictitious cross section,

η <
Σt(x)

Σ∗t
, (2.38)

the event is chosen to be a collision event. Any appropriate tallies are taken and the

particle undergoes a particle scattering event. If η is greater than the ratio, the potential

collision is chosen to be a non-collision. Any appropriate tallies are taken and the particle

undergoes another Woodcock-sampling-modified streaming event beginning from the

new value of xi and maintaining the same direction of particle travel µi = µi−1.

2.3.4.3 WMC Efficiency

Woodcock Monte Carlo is most efficient with well-chosen fictitious cross section values

over well-chosen flight path domains. Assuming the cost of determining optimal fictitious

cross section values and flight path domains is zero, fictitious cross section values will be

chosen for each particle flight path such that the fictitious cross section is exactly equal

to the maximum total cross section in the flight path. Likewise, an optimal algorithm

will impose a boundary on the length of the flight path such that the maximum total

cross section is not too disparate from the minimum and average total cross sections.

This reduces the additional computational cost of sampling many potential distances to

collision for which another streaming operation was chosen.

For example, if the total cross section in a flight path domain was generally very small,

but very large for a small portion of the domain, d∗c would be sampled over db on average

many times, and for most of them the particle would continue streaming on its initial
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path. This would cause many essentially meaningless potential collision interactions. A

more efficient choice would be to impose a boundary immediately before and another

after the small section of the flight path domain for which the total cross section was

large. The flight path would be broken up into three segments for which WMC is efficient

on each, and on average considerable computational time would be saved.

When available a search for the most efficient location or locations for imposed flight path

domains should be made as an analysis of a physical system before particle simulation,

though searches can be made on the fly. If searches for efficient flight path domains

are made during particle simulation, careful consideration must be made in selecting

the searching algorithm so that its net effect is computational savings. Whether WMC

flight path domains are solved for before or during particle simulation, the challenge is

to spend less time analyzing the physical problem for placement of imposed boundaries

than is saved though the use of the imposed boundaries.
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Stochastic Solution Methods

In Chapter 2 we introduced the stochastic transport equation and described the use

of Monte Carlo particle simulation for the solution of a realization of the stochastic

equation. Here we discuss methods used to solve quantities of interest over the stochastic

variation of the input.

The Karhunen-Loève (KL) expansion and the polynomial chaos expansion (PCE) are

two spectral models of a field. In general, use of the KL expansion is preferred as its terms

belong to a single eigenspectrum expansion of monotonically decreasing magnitude. The

number of terms required in a truncation of the KL expansion to attain desired accuracy

is generally less than the number required from the PCE and the truncation scheme

is more straightforward. Modeling a field using the KL expansion, however, requires

knowledge of the field covariance, which is not always known. The PCE can be used

even when the field covariance is not known.

We use the KL expansion to model random media. In Chapter 5 we use the KL expansion

to model spatially continuous random media and in Chapter 6 we use the KL expansion

to model spatially discontinuous random media. In both cases we assume the covariance

of the random field of material cross sections and use the KL expansion to reduce

an uncountably infinite number of random variables–one at each location in x–to a

countably infinite number of random variables. Through truncation we further reduce

the stochastic dimensionality to a finite number of random variables.

We resolve the effects of stochastic variation in input parameters on our quantities of

interest through random sampling (RS), stochastic collocation (SC), and construction

22
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of the response field through use of the PCE. In Chapter 4 we examine a problem which

has a finite number of random variables. In Chapters 5 and 6 we examine problems for

which random cross section fields have been modeled using the KL expansion, reducing

the number of random variables to a finite number. In each case, we solve quantities

of interest over realizations of the stochastic transport equation at nodes of a RS or

SC method. Random sampling provides moments of a quantity of interest and allows

construction of a response probability density function (PDF). Stochastic collocation,

a form of deterministic sampling, solves moments of a quantity of interest, for some

problems more efficiently than RS, but does not provide calculation of response PDFs.

We therefore use SC nodes and solutions to build a PCE model of the stochastic response.

From this PCE model we solve moments of the quantity of interest and sample cheaply

to construct PDFs of the response.

3.1 Random Geometry Modeling: Karhunen-Loève (KL)

Expansion

The Karhunen-Loève expansion is the optimal spectral expansion of a second order

random process [7–9]. For random process g(x, ω) it is written:

g(x, ω) = 〈g〉+
∞∑
k=1

√
γkuk(x)ξk(ω), (3.1)

where 〈g〉 is the average value of the process, often in literature assumed to be equal

to zero; γk, uk, and ξk are the eigenvalue, eigenfunction or eigenvector, and random

coefficient for expansion term k; x represents dependence in the physical domain; and ω

represents a realization in the stochastic domain. Eigenfunctions uk(x) provide variation

across the physical domain and random variables ξk(ω) provide variation across the

stochastic domain. Eigenvalues γk provide a magnitude for the contribution of each term

k, and the process average 〈g〉 provides a value about which the rest of the expansion

adds variation.

The eigenspectrum is purely discrete, characterized by a countably infinite ordered set of

eigenvalues and orthogonal eigenfunctions (Eq. (3.1)) which can be normalized yielding

(
uk(x), uk′(x)

)
= δkk′ , (3.2)
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where
(
f(x), g(x)

)
≡
∫
x f(x)g(x)dx.

The expansion coefficients ξk(ω) are uncorrelated (Eq. (3.3a)), zero-mean (Eq. (3.3b)),

and unit variance (Eq. (3.3c)) random variables:

E[ξk(ω)ξk′(ω)] =

∫
ξk

∫
ξk′

ξkξk′p(ξk, ξk′)dξkdξk′ = δkk′ , (3.3a)

E[ξk(ω)] =

∫
ξk

ξkp(ξk)dξk = 0, (3.3b)

V[ξk(ω)] =

∫
ξk

(E[ξk]− ξk)2p(ξk)dξk = 1. (3.3c)

Eigenvalue and eigenfunction or eigenvector pairs for eigenmode k in the KL expansion

are generated by solving the Fredholm integral equation

∫
D
Cg(x, x

′)u(x′)dx′ = γu(x), (3.4)

in which Cg(x, x
′) is the autocovariance of process g(x, ω). KL eigenvalues decrease

monotonically in magnitude, and KL eigenfunctions are spatially smooth functions. If

the Fredholm equation is solved numerically, KL eigenvectors approximate spatially

smooth eigenfunctions.

In practice evaluation of the KL expansion, Eq. (3.1), must be truncated to a finite

number of eigenmodes K. The number of terms which must be kept to represent the

process variance within a tolerance is governed by the rate at which the eigenvalues

decrease. In general, highly correlated processes require fewer eigenmodes to accurately

represent a process, whereas processes with weak correlation require more eigenmodes.

In application it is generally hoped that few eigenmodes will be required. Using a

truncation of the KL expansion discretizes a continuous random process and allows for

dimension reduction in correlated systems.

For some calculations it may be beneficial to approach g(x, ξ(ω)) as a function spanning

a physical and a stochastic dimension. Often it is advantageous to sample values from

the stochastic domain and solve QoIs over realizations of g(x, ω). Sampling realizations

of random process g(x, ω) allows codes which solve QoIs in the physical domain to be

used as black-box solvers that are unaware of stochastic variation. For this reason,

solution methods to problems involving a random field are often selected which only
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require QoI values at various realizations of the process. Since they require no, or

very little, modification to the black-box solver, these solution methods are called non-

intrusive methods. Two such non-intrusive solution methods are random sampling and

the stochastic collocation approach.

3.1.1 KL Random Variable PDF Generation

In the case that the random variable distribution is not known or wished to be assumed

a priori and realizations of the process to be modeled are acquirable, probability density

functions of the random variable distributions can be numerically constructed. This

may be advantageous, for example, when creating a KL model from experimental data

which provides realizations of a process or if it is known how to numerically construct

realizations of the process using a method other than the KL expansion. We start with

the KL expansion, use eigenfunction orthonormality (Eq. (3.3a)) to solve for the random

variable ξk′ , and re-index back to k:

g(x, ω) = 〈g〉+

∞∑
k=1

√
γkuk(x)ξk(ω)

⇒
∫ L

0
(g(x, ω)− 〈g〉)uk′(x)dx =

∫ L

0

∞∑
k=1

√
γkuk(x)ξk(ω)uk′(ω)dx

⇒ 1
√
γk′

∫ L

0
(g(x, ω)− 〈g〉)uk′(x)dx = ξk′(ω)

⇒ ξk(ω) =
1
√
γk

∫ L

0
(g(x, ω)− 〈g〉)uk(x)dx.

(3.5)

We solve the RHS of Eq. (3.5) for various values of ξ, and from these values construct

a probability density function for each random variable ξk(ω).

3.1.2 KL Truncation Error

We make use of the random variable orthogonality condition (Eq. (3.3a)) to solve for

the variance maintained at x in the slab in the KL expansion as a result of truncation
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at term K:

gK(x, ω) = 〈g〉+

K∑
k=1

√
γkuk(x)ξk(ω)

⇒
∫ ∞
−∞
· · ·
∫ ∞
∞

(gK(x, ω)− 〈g〉)2dξ =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(
K∑
k=1

√
γkuk(x)ξk(ω)

)2

dξ

⇒ E[(gK(x)− 〈g〉)2] =

K∑
k′=1

√
γk′
√
γk′uk′(x)uk′(x)

⇒ V[gK(x)] =

K∑
k=1

γku
2
k(x).

(3.6)

We can transform this into the percentage of variance maintained at x with KL trunca-

tion order K by dividing by the process variance:

% variance maintained =
V[gK(x)]

vg
=

V[gK(x)]

V[gK=∞(x)]
=

1

vg

K∑
k=1

γku
2
k(x). (3.7)

We integrate the variance maintained (Eq. (3.6)) over the domain and utilize the or-

thonormality of the eigenfunctions (Eq. (3.3a)) to reduce:

∫ L

0
V[gK(x)]dx =

∫ L

0

K∑
k=1

γku
2
k(x)dx =

K∑
k=1

γk. (3.8)

We note that if all eigenmodes are kept and the process is therefore perfectly represented

(K =∞), the solution to this integral is exact and known:

∫ L

0
V[gK=∞(x)]dx =

∞∑
k=1

γk = vg

∫ L

0
dx = vgL. (3.9)

We use Eqs. (3.8) and (3.9) to represent the truncated KL’s mean square error over the

domain:

ε2K = vgL−
K∑
k=1

γk. (3.10)

Noting that vgL is equal to the non-truncated sum of the eigenvalues (Eq. (3.9)) it can

be seen that this formulation of the mean squared error is equivalent to that often given

in the literature:

ε2K =
∑
k>K

γk. (3.11)
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As long as the variance of the process is known a priori, the form in Eq. (3.10) is more

useful computationally, as it provides the mean squared error of the process as a function

of terms kept in the KL truncation instead of the infinite number of terms which are

truncated.

3.1.3 KL Eigenmode Solutions

Karhunen-Loève eigenvalues and eigenfunctions or eigenvectors are solved from

∫
D
Cg(x, x

′)uk(x
′)dx′ = γkuk(x), (3.12)

which is a re-statement of Eq. (3.4). If the covariance Cg(x, x
′) is such that the integral

can be analytically solved, an analytic solution of the eigenvalues and eigenfunctions is

likely preferred. We present an analytic solution of the KL eigenfunctions and eigen-

values for the exponential covariance in Section 3.1.3.1. A similar analytic solve for

the triangular covariance function is available in Ref. [43]. Many covariance functions,

including those defined by a discrete vector only, do not lend to an analytic solve. As a

result we solve Eq. (3.12) numerically using the Nyström method in Section 3.1.3.2.

3.1.3.1 Analytic Solve for Covariance Function: Exponential Covariance

The exponential autocovariance function

Cg(x, x
′) = vg exp

[
−
∣∣x− x′∣∣
λc

]
, (3.13)

where λc is a correlation length between points in an isotropic, weakly stationary field,

represents the autocovariance of a medium with Markovian mixing statistics and is

sometimes of interest in modeling random processes [10, 44, 45]. We note that as the

correlation length increases, λc → ∞, the process becomes fully correlated and has no

variation in the spatial domain. As the correlation length decreases, λc → 0, the process

is not correlated with itself and takes on a spatially sporadic structure.
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Inserting the exponential covariance (Eq. (3.13)) into the Fredholm equation (Eq. (3.4))

for a problem of domain x, x′ ∈ [0, L] produces

∫ L

0
vg exp

[
−
∣∣x− x′∣∣
λc

]
u(x′)dx′ = γu(x). (3.14)

We differentiate Eq. (3.13) twice with respect to x and reorganize to form the differential

equation

u′′(x) + α2u(x) = 0, α2 =
2vg − γ

λc

λcγ
. (3.15)

We evaluate Eq. (3.13) and its derivative with respect to x at x = 0 and x = L and

arrange the resulting equations to yield boundary conditions:

λcu
′(0)− u(0) = 0 (3.16a)

λcu
′(L) + u(L) = 0. (3.16b)

Noting that Eq. (3.13) represents a simple harmonic oscillator, we present the solution

u(x) = A sin(αx) +B cos(αx) (3.17)

and utilize boundary conditions (Eq. (3.16)) to form the transcendental equation

tan

(
αL

λc

)
=

2αλc
λ2
cα

2 − 1
, (3.18)

with roots αk. We update our differential equation to a set of differential equations and

solutions arising from the values of αk:

u′′k(x) + α2
kuk(x) = 0, α2

k =
2vg − γk

λc

λcγk
, (3.19)

and

uk(x) = Ak sin(αkx) +Bk cos(αkx). (3.20)

We insert Eq. (3.20) into Eq. (3.19) and solve for eigenvalues γk:

γk =
2vgλc

λ2
cα

2
k + 1

. (3.21)
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We use Eq. (3.16a) to relate Ak and Bk,

Bk = λcαkAk, (3.22)

and simplify Eq. (3.20):

uk(x) = Ak[sin(αkx) + λcαk cos(αkx)]. (3.23)

Finally we solve Ak by normalizing the already orthogonal eigenfunctions uk(x):

∫ L

0
u2
k(x)dx = 1 (3.24a)

⇒ Ak =

√
1

L
2 (λ2

cα
2
k − 1) + λc

. (3.24b)

Figure 3.1 plots eigenvalues and eigenfunctions produced using the exponential covari-

ance function and a slab length L = 5. We note the monotonic decrease in eigenvalue

magnitudes and that this decrease is sharper for more correlated processes (when λc is

larger). This means that for more correlated processes, a smaller truncation order K

can be chosen in order to maintain the same amount of statistical information.
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Figure 3.1: Example Eigenvalues and Eigenfunctions for Exponential Variance

3.1.3.2 Numeric Solve of Covariance Function: Nyström Method

To solve the Fredholm integral equation that defines Karhunen-Loève eigenvalues and

eigenvectors (Eq. (3.4)), we employ the Nyström method (NM) [14, 15]. The Nyström
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method applies a quadrature of order NNy over the domain to integrate the LHS integral,

NNy∑
j=1

wjCg(x, xj)uk(xj) = γkuk(x), (3.25)

with nodes at xj , j ∈ {1, . . . , NNy}, and weights of wj . The integral is solved for each

value of xi:
NNy∑
j=1

wjCg(xi, xj)uk(xj) = γkuk(xi), k = 1, . . . , NNy. (3.26)

We rewrite the eigenvalue problem in Eq. (3.26) in matrix notation:

CWuk = γkuk. (3.27)

Matrix C is a symmetric positive semi-definite matrix with elements Cij = Cg(xi, xj).

Matrix W is a diagonal matrix with values wj . Vector uk spans the physical domain for

each KL eigenvalue k. The quadrature order NNy is equal to the number of eigenmodes

that are solved for, and the variance of the problem is normalized based on the number of

KL eigenmodes solved. To minimize the bias of normalizing the total process variance to

that given by NNy Karhunen-Loève terms, quadrature order NNy should be somewhat

larger than the number of KL terms kept, K. What order of NNy is sufficient is best

determined through a convergence study.

We reformulate Eq. (3.27) to

W
1
2 CW

1
2 W

1
2 uk = γkW

1
2 uk, (3.28)

where W
1
2 is a diagonal matrix with values

√
wj . Through substitutions

B = W
1
2 CW

1
2 , (3.29a)

u∗k = W
1
2 uk, (3.29b)

we simplify:

Bu∗k = γku
∗
k. (3.30)

We solve Eq. (3.30) for u∗k and eigenvalues γk, and finally solve for eigenvectors uk:

uk = W− 1
2 u∗k. (3.31)
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The simplest way to evaluate eigenfunction uk(x) using eigenvector uk is to return the

eigenvector value which corresponds to the eigenvector node xi closest to x: uk,i. We

call this the “discrete” eigenfunction interpolation scheme. This interpolation scheme

produces an eigenfunction comprised of spatially discontinuous and discrete values. It

requires one evaluation of the uk per term in the KL expansion.

An alternative method for evaluation of uk(x) comes from the Nyström theory:

uk(x) =
1

γk

NNy∑
j=1

√
wju

∗
k,jCg(x, xj). (3.32)

This “Nyström” interpolation scheme provides interpolation/extrapolation for uk(x),

such that the shape of the eigenfunction is not discontinuous and more closely represents

the true eigenfunction. The “Nyström” interpolation scheme requires NNy evaluations

of eigenvector u∗k per term in the KL expansion along with computation which evaluates

Eq. (3.32). Though the “Nyström” interpolation scheme produces a more accurate

representation of the eigenfunction than the “discrete” interpolation scheme, it is about

NNy times more expensive.

We introduce a third interpolation scheme we call the “linear” interpolation scheme.

The “linear” interpolation scheme linearly interpolates between the nearest eigenvector

values corresponding to nodes xj and xj+1 when x exists between nodes and defers to

the “Nyström” interpolation method when x is not located between two nodes (when

x is near an edge of the slab). If eigenfunctions are sampled equally at values through

space, the “linear” interpolation scheme requires 1 + 2
NNy−1
NNy

–roughly three–evaluations

of uk or u∗k per term in the KL expansion along with some computation. The “linear”

interpolation scheme is nearly as accurate as the “Nyström” interpolation scheme and

much less expensive. Though the “linear” interpolation scheme is about 3 times more

expensive than the “discrete” interpolation scheme, unless the Nyström discretization

order NNy is very large, we expect the additional accuracy of the “linear” interpolation

scheme to be worth the additional cost. We compare the performance of the “discrete”

and “linear” interpolation schemes for a problem in Sections 5.4.2 and 5.4.3.
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3.2 Stochastic Equation Solution Methods

We present several means for acquiring a solution to a quantity of interest (QoI) which

results from solution of the stochastic transport equation. We presented means for

solving the problem in the physical domain using the Monte Carlo method described in

Section 2.3. We presented means for modeling random geometries using the Karhunen-

Loève expansion described in Section 3.1. The KL expansion reduces an uncountably

infinite number of random variables to a countably infinite number and with truncation

to a finite number of random variables. In problems using the KL expansion, techniques

still must be used to acquire results of the solutions of the QoIs in terms of the finite

number of random variables. The same is true for problems involving random variables

inherent in the problem, i.e., not originated through use of the KL expansion.

In this section we present three tools for solving a QoI over the uncertain domain: ran-

dom sampling (RS), stochastic collocation (SC), and the polynomial chaos expansion

(PCE). The first two sample from the stochastic domain at randomly and determinis-

tically chosen nodes, respectively. The third is used to create a surrogate model of the

response from SC nodes and solutions.

We solve for the expectation of moment m of QoI ϕ by integrating the solution for that

moment over the probability density p(ξ1, . . . , ξD):

〈ϕm〉 =

∫
ξD

· · ·
∫
ξ1

ϕm(ξ1, . . . , ξD)p(ξ1, . . . , ξD)dξ1 . . . ξD, (3.33)

where D is the number of stochastic dimensions.

In each of our applications, we know or assume the uncertain distributions to be fully

independent, a property which allows a factorization of the joint probability into a

product of one-dimensional probability distributions, vis.,

p(ξ1, . . . , ξD) =

D∏
n=1

p(ξn). (3.34)
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3.2.1 Random Sampling (RS)

Our first solution method for solving the expectation of a moment of the QoI is through

random sampling (RS). In the RS approach, we choose nodes ξ
(i)
n randomly, but accord-

ing to the probability distribution p(ξn), in each dimension n and for each realization i.

After choosing nodes ξ
(i)
n , the QoIs for each realization i are solved using Monte Carlo

particle transport. QoI data is used to either solve for moments of a particular QoI, or

to generate a probability density function (PDF) of the QoI. This method of random

sampling is correctly called a “Monte Carlo” method, but we call it random sampling

for the duration of this work to avoid confusion in terminology.

If we are seeking a moment of a QoI, we evaluate Eq. (3.33) as

〈ϕm〉 ≈ 1

R

R∑
i=1

ϕm(ξ
(i)
1 , . . . , ξ

(i)
N ), (3.35)

where R is the total number of realizations and ξ
(i)
n are sampled from p(ξn). A value of

〈ϕm〉 converges according to the Central Limit Theorem as R−
1
2 .

If we are seeking a PDF of the QoI, we store moment values of the QoI for each realization

i,
(
ϕ(i)
)m

, choose an upper and lower bound and number of cells for the PDF, and

generate the PDF. Care should be taken to choose an appropriate number of bins for

the PDF. Selecting too many bins for the number of samples R will result in a noisy

distribution which is of little use. Selecting too few bins will jeopardize the integrity

of the PDF by averaging over regions of the QoI response in which the true PDF may

contain important shape features. These features will be “smeared out” by selecting too

few bins.

The random sampling method is dimensionally agnostic, meaning the convergence rate

of a moment is not affected by the number of random dimensions. For this reason, it

is often used to provide a benchmark solution using many realizations R. For problems

with few random variables there are other methods such as stochastic collocation which

are expected to converge more quickly than RS. For problems with a large number of

random variables, however, RS may remain the most efficient stochastic solution method.

In this work we use either uniformly distributed or Gaussian-distributed probability

densities. Since most random number generators provide numbers uniformly distributed
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from zero to one, generation of random samples over a uniform probability distribution is

a trivial mapping of the probability distribution. Depending on the software being used,

generation of Gaussian-distributed random samples may be less trivial. We therefore

examine methods for generating Gaussian-distributed random samples in Appendix A.

3.2.2 Stochastic Collocation (SC)

Our second method for solving the expectation of a moment of the quantity of interest is

a deterministic sampling method called stochastic collocation (SC). In the SC approach,

we choose nodes ξ
(qn)
n according to a Qn-order quadrature in dimension n. With real-

izations defined through node values ξ
(qn)
n using quadrature index qn ∈ {q1, . . . , qD} for

each dimension n, solutions to QoIs are solved on each realization using Monte Carlo

particle transport. QoI data is used to solve for moments of the QoIs. This method does

not, of itself, produce a PDF of the QoI. We choose, however, to use this method to solve

the coefficients of a polynomial chaos expansion representation of the QoIs which can

be used to produce PDFs of the QoIs. Simply put, the SC method applies a cubature

over the stochastic dimensions.

We solve the expectation of a moment of a QoI, ϕm, through application of a cubature

over the multi-dimensional integral in Eq. (3.33):

〈ϕm〉 ≈
QD∑
qD

· · ·
Q1∑
q1

w
(q1)
1 . . . w

(qD)
D ϕm(ξ

(q1)
1 , . . . , ξ

(qD)
D ), (3.36)

where w
(qn)
n are the cubature weights.

The most direct approach to stochastic collocation applies the same quadrature order

Q in each dimension n, vis., Q = Qn∀n ∈ {1, . . . , D}. This is called isotropic stochastic

collocation (iSC). The number of realizations for iSC is

RSC = QD. (3.37)

Often some stochastic inputs contribute considerably more to the response than oth-

ers. It such a case it may be advantageous to apply an anisotropic cubature, in which

the quadrature order in each dimension n is not uniform [17]–we call this anisotropic
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stochastic collocation (aSC). The number of realizations for aSC is

RSC =

D∏
n

Qn. (3.38)

It is easy to see that Eq. (3.38) reduces to Eq. (3.37) when all quadrature orders have

the same value.

Other methods exist for choosing an efficient cubature grid. Sparse collocation grids

reduce the number of cubature nodes [10, 16, 17]. Sparse, anisotropic collocation grids

reduce the number of cubature nodes preferentially resolving the effects of stochastic

inputs which are considered of greater importance to the response [17]. Adaptive meth-

ods exist in which quadrature orders are successively increased according to an estimate

of the error in the response which would be reduced in each dimension by increasing

the quadrature order [16, 17]. Each of these approaches integrates to solve the response

over an integral of the entire stochastic domain; methods also exist for applying cu-

bature over portions of the stochastic domain such that regions of higher significance

can be resolved more than others. Another way to increase the efficiency of a SC solve

is to apply sensitivity methods [16] which assess the sensitivity of stochastic inputs or

input combinations and allow certain stochastic inputs to be ignored in analysis due to

negligible contribution to the response.

In this work we use iSC and aSC. We have chosen aSC for several of our applications

because our stochastic inputs are the random variables of the Karhunen-Loève expan-

sion, which are known to decrease in contribution to the response monotonically. This

provides a natural opportunity for collocation anisotropy [17]. In problems not using the

KL expansion, we resolve all stochastic inputs, considering them significant contributors

to the response. In problems involving the KL expansion, we decrease the number of

stochastic inputs by choosing our KL truncation order, but apply no other sensitivity

analysis for dimensional reduction.

Various quadratures are available, and may be preferred for different applications. We

examine several quadrature rules in Appendix B. In this work, we use Gauss-Legendre

(GL) quadrature when integrating over a closed support, and Gauss-Hermite (GH)

quadrature when integrating over an open support. Gauss-Hermite quadrature is de-

fined over a Gaussian basis which is not normalized
(
exp

[
− ξ2

])
, whereas we apply
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GH quadrature over the standard normal basis function
(

1√
2π

exp
[
− ξ2

2

])
. We discuss

mapping of GH quadrature from the first basis to the second (probability density) in

Appendix B.

3.2.3 The Polynomial Chaos Expansion (PCE)

The polynomial chaos expansion (PCE) creates a surface using orthogonal random poly-

nomials. We use it to build a surrogate model of system response. It was first intro-

duced as homogeneous chaos by Wiener in 1938 [18] using Gaussian-random variables

and Hermite polynomials. In 1985 Askey and Wilson [46] identified orthogonal (and hy-

pergeometric) polynomials over other basis functions. These orthogonal polynomials are

now commonly called Askey-scheme polynomials or simply Askey polynomials. In 2002

Xiu and Karniadakis [19] generalized the existing Gaussian-based homogeneous chaos

using Askey polynomials over their corresponding basis functions to produce general-

ized polynomial chaos. Selected Askey polynomials and their associated basis functions

are presented in Appendix C. Generalized polynomial chaos is sometimes known by our

name for it: the polynomial chaos expansion (PCE). In 2003 Mathelin and Hussaini [20]

used a cubature over the Askey polynomials of the PCE, creating Askey-based stochas-

tic collocation-polynomial chaos. This method is discussed more rigorously in [21],

and has been used widely in recent years, especially in engineering applications such

as [10, 16, 22, 44, 47–51]. This is the method for constructing the PCE we use in this

work. Another approach to stochastic collocation for construction of a PCE uses La-

grange polynomials. It is rigorously presented in [52] and has been used widely in recent

years as well in works such as [17, 53–58]. Both approaches to the PCE are available in

Sandia’s Dakota [59] uncertainty quantification code, and at least one investigation has

compared the performance of the two [60].

The PCE is an infinite expansion of Askey polynomials which define a surface. We use

the PCE to build a surrogate model of the system response spanning the stochastic

domain. In practice we must truncate the infinite expansion. We solve expansion co-

efficients using stochastic collocation, though other methods such as integration using

random sampling or the stochastic Galerkin method [20, 22, 47] exist. A PCE model

built from SC results (SC-PCE) is as accurate to the system response as the results
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of the numerical integration of the stochastic collocation with an additional error in-

troduced through PCE truncation. We find the PCE model advantageous, however,

primarily in that it uses SC to produce a response surface which can be sampled from to

produce PDFs of the system response–a capability SC in itself lacks. The PCE model

can also be used for response prediction. Once a physical problem has been solved

enough times to build a PCE model, the model can predict the response throughout

the stochastic domain. This can be useful when analyzing a physical model’s response

across the stochastic domain for results such as maximum and minimum responses, and

is especially useful when solution of the physical model is expensive.

The PCE requires a somewhat smooth response in the stochastic domain, as it approxi-

mates a response surface using polynomials. This is a constraint of any surrogate model

which uses continuous functions, and is similar to the smoothness limitation of stochastic

collocation.

The infinite-dimensional, infinite-order PCE for a quantity of interest ϕ is written

ϕ(ω) =û0Γ0 +
∞∑
i1=1

ûi1Γ1(ξi1) +
∞∑
i1=1

i1∑
i2=1

ûi1i2Γ2(ξi1 , ξi2)

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

ûi1i2i3Γ3(ξi1 , ξi2 , ξi3) + · · · ,

(3.39)

where Γj are j-order Askey polynomials, ûi1...iI are PCE coefficients, and ξn denote

polynomial dependence in dimension n [43]. For a D-dimensional problem with an

I-order truncation the PCE reduces to

ϕ(ω) =û0Γ0 +
D∑
i1=1

ûi1Γ1(ξi1) +
D∑
i1=1

i1∑
i2=1

ûi1i2Γ2(ξi1 , ξi2) + · · ·

+
D∑
i1=1

· · ·
i1∑

iI−1=1

ûi1···iI−1ΓI−1(ξi1 , . . . , ξiI ).

(3.40)

The first term of the PCE, û0Γ0, is the zeroth-order term of the PCE, comprised of one

coefficient and a zeroth-order polynomial (Γ0 = 1).

The set of PCE terms after the first term,
∑∞

i1=1 ûi1Γ1(ξi1), contains all PCE terms of

total polynomial order one. This consists of multivariate polynomials which are first-

order in dimension i1 and zeroth-order in all other dimensions. The subscript i1 on
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the coefficient ûi1 denotes which multivariate polynomial it pairs with: the first-order

polynomial with dependence on ξi1 .

The next set of PCE terms,
∑∞

i1=1

∑i1
i2=1 ûi1i2Γ2(ξi1 , ξi2), contains all PCE terms of total

polynomial order two. It consists of multivariate polynomials which are first-order in

each of two dimensions while being zeroth-order in all other dimensions and multivariate

polynomials which are second-order in one dimension while being zeroth-order in all

other dimensions. The subscripts on the ξ terms in the polynomial Γ denote the order

of the polynomial in each dimension, i.e., Γ2(ξi1 , ξi2) is first-order in dimension i1 and

first-order in dimension i2 while being zeroth-order in all other dimensions, unless i1 = i2.

In that case Γ2(ξi1 , ξi2) is second-order in dimension i1 (same as i2) and zeroth-order in

all other dimensions. The subscripts of the coefficient ûi1,i2 denote which multivariate

polynomial it pairs with: the second-order polynomial with dependence on ξi1 and ξi2

respectively.

In each of our applications the underlying probability densities are independent such that

the multivariate Askey polynomials simplify to a product of univariate polynomials, i.e.,

ΓI(ξ1, . . . , ξI) =
D∏
n=1

Γj(ξn). (3.41)

Table 3.1 provides examples of the PCE notation for a three-dimensional PCE.

Table 3.1: Example PCE Subscript Expansion for D=3

Set of PCE Terms Constituent Terms Orders

û0Γ0 û0Γ0 {0,0,0}

D∑
i1=1

ûi1Γ1(ξi1)

û1Γ1(ξ1) {1,0,0}
û2Γ1(ξ2) {0,1,0}
û3Γ1(ξ3) {0,0,1}

D∑
i1=1

i1∑
i2=1

ûi1i2Γ2(ξi1)

û11Γ2(ξ1, ξ1) {2,0,0}
û21Γ1(ξ2)Γ1(ξ1) {1,1,0}
û22Γ2(ξ2) {0,2,0}
û31Γ1(ξ3)Γ1(ξ1) {1,0,1}

...
...
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Introducing the multi-indices i = {i1, . . . , iD} and ξ = {ξ1, . . . , iD} and the multi-

dimensional Askey polynomial Φi, we can write the PCE more simply:

ϕ(ω) =

It∑
ι=0

ûi(ι)Φi(ι)(ξ), (3.42)

where ι represents a term of the expansion corresponding to a unique set of values i,

and It + 1 is the total number of PCE terms kept in truncation. The number of terms

kept in truncation is solved as a binomial coefficient:

It + 1 =
(D + I)!

D!I!
. (3.43)

The PCE suffers from the curse of dimensionality as does stochastic collocation. The

increase in the number of terms with increased dimensionality is somewhat mitigated

compared to the increase in terms for SC, however, since a grid of PCE terms is simplex-

shaped whereas a grid of SC terms is hypercube-shaped. We have presented an isotropic,

simplex-shaped PCE formulation, as is presented in the original publication of homoge-

neous chaos [18]. It is possible to truncate in other ways, such as an anisotropic PCE

grid, vis., ∃ n1, n2 ∈ {1, . . . , D} s.t. In1 6= In2 , or through the use of a hypercube-shaped

PCE formulation [22]. The simplex-shaped PCE formulation carries advantages such as

simplicity and a mitigation of the curse of dimensionality, so we have used it in this

work.

3.2.3.1 Solution of PCE Coefficients using SC (SC-PCE)

There is more than one way to solve for expansion coefficients when using the PCE

to model a response surface. We have chosen to solve the expansion coefficients using

stochastic collocation, and denote use of the PCE with coefficients solved using SC as

SC-PCE.

We begin with the compact version of the PCE in Eq. (3.42):

ϕ(ω) =

It∑
ι=0

ûi(ι)Φi(ι)(ξ). (3.44)
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We define notation for integration of functions f and g over multi-dimensional proba-

bility density p(ξ):

〈
f(ξ), g(ξ)

〉
=

∫
ξI

· · ·
∫
ξ1

f(ξ)g(ξ)p(ξ)dξ. (3.45)

We multiply both sides of Eq. (3.44) by a multi-dimensional Askey polynomial and

integrate over the probability density:

〈
ϕ(ω), Φj(ξ)

〉
=

〈
It∑
ι=0

ûi(ι)Φi(ι)(ξ), Φj(ξ)

〉
, (3.46)

where j = {j1, . . . , jD}. We pull the expansion coefficients out of the integral on the RHS

and evaluate the equation using the Askey polynomial orthogonality condition discussed

for selected Askey polynomials in Appendix C. Eq. (3.46) reduces to

〈
ϕ(ω), Φj(ξ)

〉
=
ûj
aj
. (3.47)

We rearrange and re-index to yield an expression for each PCE coefficient:

ûi = ai

〈
ϕ(ξ), Φi(ξ)

〉
. (3.48)

Since we do not have values for the whole response surface ϕ(ξ)–that is in fact what

we are creating a surrogate model to approximate–we solve the integral in Eq. (3.48)

numerically. We could solve this integral using a variety of numerical integration tech-

niques such as random sampling, but choose to solve it using stochastic collocation. We

choose a cubature-based on the Askey polynomial over which we integrate with nodes

at ξ(q) = {{ξ(q1)
1 , . . . , ξ

(q1)
D }, · · · , {ξ(qD)

1 , . . . , ξ
(qD)
D }} with corresponding weights w

(qn)
n .

Some quadratures corresponding to selected polynomials are discussed in Appendix B.

We approximate the integral in Eq. (3.48), as

ûi ≈ ai
QD∑
qD=1

· · ·
Q1∑
q1=1

w
(q1)
1 . . . w

(qD)
D ϕ(ξ(q))Γi1(ξ

(q1)
1 ) . . . ΓiD(ξ

(qD)
D )p(ξ(q)). (3.49)

It is useful to remember that p(ξ(q)), for the problems we solve here, is simply the

product of the probability densities in each dimension (Eq. (3.34)).
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We can now solve the expansion coefficients using only RSC evaluations of the physical

problem.

3.2.3.2 Anisotropic PCE based on anisotropic SC (aSC-aPCE)

The order of the quadrature used when solving the expansion coefficients in Eq. (3.49)

limits the amount of information available for solving the coefficients. Quadrature of

order Qn can solve expansion coefficients of polynomial order Qn. We therefore limit the

polynomial order for terms of the PCE to be no greater than the highest order which can

be solved for with the quadrature order chosen. Subject to this constraint, we introduce

an implementation of anisotropic polynomial chaos.

Our initial truncation is according to the isotropic PCE truncation order of the PCE,

such that the number of PCE terms is solved by Eq. (3.43). We further truncate to create

an anisotropic PCE implementation by eliminating any terms for which the polynomial

order is greater than the SC quadrature order used to solve that coefficient in the

corresponding dimension. We accomplish this by setting the expansion coefficient equal

to zero, vis., ûi = 0, for all terms in which the polynomial order is greater than the

collocation order in at least one dimension, vis., ∃n s.t. in > Qn. We denote the method

described as use of isotropic stochastic collocation to build a PCE model subject to SC

orders (and thus isotropic) as either iSC-iPCE or simply iSC-PCE. Conversely, we denote

the method described as use of anisotropic stochastic collocation to build a PCE model

subject to SC orders (and thus anisotropic) as either aSC-aPCE or simply aSC-PCE.

Following SC-based truncation of the PCE ,the number of remaining terms is less than or

equal to the number given by Eq. (3.43) and less than or equal to the maximum allowed

by the truncation due to an underlying aSC. These two constraints on the number of

terms are summarized as

It + 1 ≤(D + I)!

D!I!
; (3.50)

It + 1 ≤
D∑
n=1

(Qn + 1). (3.51)

Two logical choices for PCE truncation order I for a quadrature set are I = max(Q) and

I =
∑

nQn. The first choice for truncation order reduces the number of higher-order
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cross terms in the expansion, while capturing the on-axis terms up to the quadrature

order in each dimension. When using isotropic stochastic collocation, the number of

PCE terms yielded by this choice of PCE order is solved by Eq. (3.50). The second

choice of initial PCE truncation order captures all higher-order cross terms for which SC

information is available. The number of terms is solved by Eq. (3.51). When evaluating

the efficiency of a solve, we compare the convergence of the error as a function of either

the number of physical solves or the number of MC particle histories and consider the

cost of computation for PCE operations negligible. If the cost of PCE operations is

negligible for a particular problem and quantity of interest, the second choice of PCE

truncation order should be chosen as it captures all the available information from a

SC solve. The first choice of PCE truncation order grows considerably slower with

increased stochastic dimensionality, however, and may be preferred to help ensure that

the computational cost of performing operations using the PCE is in fact negligible

for a problem. Because of the trade-off of increased computation for a larger number of

solves, especially in problems with many stochastic dimensions, the best PCE truncation

scheme is problem-dependent. We will use the first truncation method, that does not

capture as many higher-order cross-terms in this work except as specified.

3.2.3.3 Analytic Solution of PCE Response Moments

Using Askey polynomial orthogonality, we can solve the mean and variance of a PCE

surface for which we know the expansion coefficients analytically. We solve each in

succession starting from Eq. (3.42) restated here:

ϕ(ω) =

It∑
ι=0

ûi(ι)Φi(ι)(ξ). (3.52)

To solve the mean of the PCE, E[ϕ], we integrate over the probability density associated

with the Askey polynomials, inserting a zeroth order polynomial (Γ0 = 1) in the integral

to take advantage of orthogonality:

∫
ξ1

· · ·
∫
ξD

ϕ(ξ(ω)) 1 p(ξ)dξ =

∫
ξ1

· · ·
∫
ξD

(
It∑
ι=0

ûi(ι)Φi(ι)(ξ)

)(
Φ{0,...,0}(ξ)

)
p(ξ)dξ

⇒ E[ϕ] = 〈ϕ〉 =
û{0,...,0}

a{0,...,0}

(3.53)
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When using Legendre polynomials, this reduces to simply the zeroth order PCE coeffi-

cient:

E[ϕ] = û{0,...,0}. (3.54)

When using Hermite (probablists’) polynomials, the solution is almost as simple:

E[ϕ] = û{0,...,0}(2π)
D
2 . (3.55)

We solve the second moment of the QoI in a similar way, but begin by squaring each

side of the equation and end by re-indexing:

∫
ξ1

· · ·
∫
ξD

ϕ2(ξ(ω))p(ξ)dξ =

∫
ξ1

· · ·
∫
ξD

(
It∑
ι=0

ûi(ι)Φi(ι)(ξ)

)(
It∑
κ=0

ûj(κ)Φj(κ)(ξ)

)
p(ξ)dξ

⇒ 〈ϕ2〉 =

It∑
ι=0

û2i(ι)

ai(ι)

(3.56)

Finally we solve the the variance of the PCE surface:

V[ϕ] = 〈ϕ2〉 − 〈ϕ〉2; (3.57a)

V[ϕ] =

It∑
ι=0

û2
i(ι)

ai(ι)
−

(
û{0,...,0}

a{0,...,0}

)2

. (3.57b)

In general, Eq. (3.57a) is probably the most practical approach to solving for V[ϕ],

vis., solving for each moment and then subtracting. When using Legendre polynomials,

however, since a{0,...,0} = 1, we can further reduce Eq. (3.57b) to

V[ϕ] =

It∑
ι=1

û2
i(ι)

ai(ι)
. (3.58)

This form makes it clear that the variance of the Legendre polynomial-based PCE is not

influenced by the value of the mean of the PCE.
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Chapter 4

Stochastic Convergence on

Random Coefficients

In this chapter we establish nomenclature and methods for examination of solution

method error convergence and demonstrate on a simple problem. We first discuss error

bounding and convergence. We then present a stochastic transport problem for which

we investigate the error convergence of several methods. We look at the convergence of

several methods in isolation and finally solve a problem by resolving quantity of interest

(QoI) error below a chosen tolerance using two different stochastic solvers.

4.1 Error Convergence

A solution method is appropriate for a problem and QoI if successive changes in a set

of parameters for that solution method will towards the correct value of the chosen

problem QoI. In this section we define an approach to bound the total QoI error and the

contributions to the error from each solver. We then discuss how to approach a study

of the solution error convergence. Lastly we discuss the reuse of solution data in Monte

Carlo (MC) and random sampling (RS) solves with limited information storage and in

cubature solves using nested quadrature.

44
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4.1.1 Definition of Error Bounds

We define the error for a QoI ϕ as the magnitude of the difference between the expec-

tation of the model’s true solution and the solution yielded by the method. We denote

use of a solver in the stochastic domain with a subscript to the expectation operator as

in Eq. (4.1a) and use of a solver in the physical domain with a subscript on the QoI as

in Eq. (4.1b):

εSC =
∣∣∣E[ϕ]− ESC [ϕ]

∣∣∣, (4.1a)

εMC =
∣∣∣E[ϕ]− E[ϕMC ]

∣∣∣. (4.1b)

In both cases we include as a subscript of the error term ε a description of the solver

being used.

At times we want to compute the error of one method solved in conjunction with another

method at a certain set of method parameters. For example, we may want to compute the

error of the Monte Carlo solver for a QoI solved with a certain set of stochastic collocation

(SC) quadrature orders. The error we solve for is the difference between the expectation

solved using the stochastic collocation scheme with no, or negligible, error in the physical

solver, ESC [ϕ], and the expectation solved using the same stochastic collocation grid with

the Monte Carlo physical solver, ESC [ϕMC ]. We denote this error using the subscript

MC(SC) to show that this is the Monte Carlo error for a set stochastic collocation solve.

The error term is then defined:

εMC(SC) =
∣∣∣ESC [ϕ]− ESC [ϕMC ]

∣∣∣. (4.2)

We may use more specific notation by providing the parameter set for the solver which

does not change between the two solves. For example, Eq. (4.2) could be rewritten while

providing the quadrature orders for the stochastic collocation solver as

εMC(SC,Q={5,4,3}) =
∣∣∣ESC,Q={5,4,3}[ϕ]− ESC,Q={5,4,3}[ϕMC ]

∣∣∣. (4.3)

Furthermore, at times we are interested in computing a bound on the total error pro-

duced from more than one error source in a solution approach. We solve a bound on the

error by summing the magnitude of the error contributed from each solution method.
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We include in the subscript of the error term the designation for each solution method

that contributes to the error, separated by commas. For example, we begin by represent-

ing the total error from the MC physical solver and the SC stochastic solver as εSC,MC .

We add and subtract the expectation of the QoI solved with our SC solver ESC [ϕ]. We

introduce absolute value signs to acquire the error of the SC solver and the error of the

MC solver as a function of the SC solver with a chosen set of parameters. In practice,

multiple error sources may serendipitously counteract to produce less total error than

the sum of the magnitude of each individual error. We compute a bound on the total

error, however, by summing the magnitude of errors introduced by each error source.

This process for our example is summarized as

εSC,MC =
∣∣∣E[ϕ] − ESC [ϕMC ]

∣∣∣ (4.4a)

=
∣∣∣E[ϕ]− ESC [ϕ] +ESC [ϕ]− ESC [ϕMC ]

∣∣∣ (4.4b)

≤ εSC + εMC(SC) =
∣∣∣E[ϕ]− ESC [ϕ]

∣∣∣+∣∣∣ESC [ϕ]−ESC [ϕMC ]
∣∣∣. (4.4c)

We can write equations similar to Eq. (4.4c) by isolating the error contribution of the

methods in different ways, e.g.,

εSC,MC ≤ εMC + εSC(MC) =
∣∣∣E[ϕ]− E[ϕMC ]

∣∣∣+
∣∣∣E[ϕMC ]− ESC [ϕMC ]

∣∣∣. (4.5)

Similarly, we can write equations like this for error terms involving more than two solvers.

For example, the total error for a QoI solved from a PCE model built using SC and using

the MC physical solver at each collocation node can be represented as

εPCE,SC,MC ≤ εPCE + εSC(PCE) + εMC(PCE,SC);

εPCE =
∣∣∣E[ϕ]− EPCE [ϕ]

∣∣∣,
εSC(PCE) =

∣∣∣EPCE [ϕ]− ESC(PCE)[ϕ]
∣∣∣,

εMC(PCE,SC) =
∣∣∣EPCE,SC [ϕ]− EPCE,SC [ϕMC ]

∣∣∣.
(4.6)
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4.1.2 Error Convergence Methodology

An error convergence study changes some solver parameter in a way expected to yield a

smaller error. If the method converges for the problem and QoI, the error will decrease

as the free parameter(s) of the solver changes in the correct way. A plot of this behavior

is a convergence plot.

In order to perform a convergence study, E[ϕ] must be known or adequately approxi-

mated. In practice E[ϕ] will not usually be known–if it were there would be no need for

a solver which produces error. We have chosen a problem for this chapter, however, in

which we solve E[ϕ] analytically. In applications E[ϕ] can be approximated by solving

with a set of parameters for the solver or solvers which is expected to produce an error

significantly smaller than the errors of interest in the convergence study. Alternatively,

the solution expectation can be approximated by solving E[ϕ] with another solution

method for which the error is expected to be sufficiently small. For example, when using

MC in the physical domain E[ϕ] may be approximated by E[ϕMC ] with a number of

particle histories N greater than any number of histories for which the error is plotted in

a convergence study or using a different method like SC with high quadrature orders in

each dimension. When desiring to plot error convergence for a number of histories up to

N = 108, E[ϕ] could be approximated using N = 1010 histories: E[ϕ] ≈ E[ϕMC,N=1010 ],

E[ϕMC ] = E[ϕMC,N={102,...,108}].

When solving a problem and using more than one solver method, it can be useful to

study the error convergence of each method individually. For the example in Eq. (4.4c),

we seek to generate convergence data for the SC solver, then for the MC solver at a

selected SC quadrature order set. To gather convergence data for the SC solver, if we do

not have an analytical solution for the physical domain, we choose parameters for the MC

solver which are expected to yield a minimal error contribution in the physical solver,

then increase the SC quadrature orders until we observe convergence in the stochastic

domain. We choose a set of quadrature orders for the isotropic SC (iSC) solver which

yields an error εiSC below a chosen tolerance and perform a convergence study of the

MC solver using iSC with our chosen quadrature orders. This process using isotropic

stochastic collocation is demonstrated as Algorithm 1.
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Algorithm 1 Example Multi-Method Convergence Algorithm

∗ Approximate E[ϕ],

E[ϕ] ≈ EiSC,Q=10[ϕMC,N=1010 ]

∗ Evaluate εiSC for various Q,

εiSC ≈
∣∣E[ϕ]− EiSC,Q={1,...,10}[ϕMC,N=1010 ]

∣∣
∗ Plot εiSC against Q

∗ Choose a cubature order Q

∗ Evaluate εMC(iSC) at your Q and various N ,

εMC(iSC) ≈
∣∣EiSC,Q[ϕMC,N=1010 ]− EiSC,Q[ϕMC,N={103,...,108}]

∣∣
∗ Plot εMC(iSC) against N

4.1.3 Reuse of Data in Convergence Studies

Since convergence studies produce data at several or many different parameter sets, they

can be computationally expensive to perform. It is therefore advantageous to reuse data

in successive solves if possible. Random and deterministic sampling methods each allow

for reuse of solutions at input nodes if the nodes are used again in successive solves. This

is somewhat straightforward for random sampling methods, but requires use of nested

quadratures in deterministic sampling. We briefly discuss each here.

When performing a convergence study with random sampling (or Monte Carlo sam-

pling), a new estimation of the solution can be attained with each additional sample.

Estimating the error with every additional sample may not be desired due to increased

computational overhead, but obtaining enough points to discern convergence rates and

have a reasonable chance at observing any anomalies is certainly desired. The solution

at each node may be kept and the error recalculated for each number of samples at which

an error is desired. If the quantity of interest is a moment of the response or a derivative

thereof, however, the data at each node does not need to be stored in memory. Instead

only the expectation of the moment 〈ϕm〉p at the previous number of samples Rp and

the expectation of the moment 〈ϕm〉n for a new set of Rn samples need to be stored to
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calculate an updated expectation for the QoI moment 〈ϕm〉p+n:

(Rp +Rn)〈ϕm〉p+n =(Rp +Rn)
1

Rp +Rn

Rp+Rn∑
i=1

ϕmi

=

Rp+Rn∑
i=1

ϕmi

=

Rp∑
i=1

ϕmi +

Rp+Rn∑
i=Rp+1

ϕmi

=
Rp
Rp

Rp∑
i=1

ϕmi +
Rn
Rn

Rp+Rn∑
i=Rp+1

ϕmi

⇒ 〈ϕm〉p+n =
Rp〈ϕm〉p +Rn〈ϕm〉n

Rp +Rn
.

(4.7)

We use this method to update expectation of moment values using random sampling in

the stochastic domain or Monte Carlo in the physical domain. From these moments we

also update our sample standard deviation:

sp+n =
√
〈ϕ2〉p+n − 〈ϕ〉2p+n. (4.8)

Generating convergence plots by reusing samples as described here enables relatively

cheap generation of convergence plots. Without reuse of sample solutions, creation of

these plots would be much more expensive and require solving an entire set of new

samples at each point on a convergence plot. Reuse of data like this does, however, add

correlation between successive points on a convergence plot, i.e., 〈ϕm〉p+n contains the

same samples as 〈ϕm〉p and differs only by the contribution of the new Rn samples. This

correlation does not nullify the validity of a convergence plot constructed in this way.

The correlation will, however, tend to create local peaks or valleys across several values

of R in a convergence plot, as the value will only change based on Rn. This is especially

true when Rn is small compared to Rn+p; the value at Rn+p will be nearly the same as

the value at Rn.

This type of correlation can also play an important role when producing an approximate-

as-exact solution. If the solution considered to be exact for a convergence study reuses

any of the same samples as the less-converged solutions against which the “exact” solu-

tion is compared, the error will be underestimated. The best practice is to approximate
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the exact solution using an entirely different set of samples than the set used to gener-

ate the “unconverged” solutions. Thus when reusing data as part of a random sampling

convergence study, the problem should be solved twice, once for approximating the exact

solution with a large number of samples and once for generating unconverged solutions

with a maximum number of samples less than that number. If the unconverged solutions

are compared against an “exact” solution computed using some of the same samples, the

error will be underestimated, especially when the number of samples for an unconverged

solution is close the number used to produce the solution considered to be converged.

Solutions can be reused with successively higher quadrature when using nested quadra-

ture. In nested quadrature rules, nodes present in lower quadrature orders are reused in

higher quadrature orders. We have not used nested quadrature in this work, though it

would be a logical extension of this work. Selected nested quadrature rules are discussed

in Appendix B.

4.1.4 Optimal Solution for Chosen Efficiency

Demonstrating error convergence for a QoI for a problem is useful for gaining confidence

in the applicability of and implementation of a solver method or set of solver methods.

In addition, convergence studies can be used to seek an optimal set of parameters for the

chosen solution methods for resolving a QoI within a tolerance. We have presented tools

to perform convergence studies based on knowledge of the exact solution for a quantity

of interest or the QoI solution yielded by computational methods which are expected to

be more converged than the solutions in the convergence study. We can use this type

of convergence study to seek the optimal set of parameters to solve a problem QoI for

error below a chosen tolerance.

When seeking an optimal set of solver parameters for a solution involving one method, we

must converge the solution method until the total error is below a tolerance: ε ≤ TOL.

If the solve requires use of two solution methods, we can require convergence of each

method below a portion of the total tolerance by introducing a parameter θ,

TOL1 = TOLθ; TOL2 = TOL(1− θ), (4.9)
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and requiring ε1 ≤ TOL1 and ε2 ≤ TOL2. For use of more than two solution methods,

we can introduce more free parameters to split the total tolerance between more solution

methods. For example, for a three-method solve, we can distribute portions of the

tolerance,

TOL1 = TOLθ1; TOL2 = TOLθ2; TOL3(1− θ1 − θ2), (4.10)

and require each error to be converged below its assigned tolerance.

To truly optimize the overall solve, selection of the free parameters θi must be opti-

mized. This introduces complexity into the problem. We investigate optimal solution

parameters for several problems in this work for set values of TOL and θi. We do not

seek the optimal values of θi, and consider that beyond the scope of this work.

Some solver approaches seek an optimal solution through use of updated error estimates

instead of requiring knowledge of an exact, or approximated-as-exact, solution. These

adaptive methods estimate the error that could be resolved by refining one portion of

the solve and use knowledge of the increased computation required to refine the solve

to choose which method refinement is expected to most efficiently reduce the overall

error. This refinement process is followed until the solution error estimates are below

the required tolerance. One such method is multi-level Monte Carlo [61, 62] which

relies on knowledge of finite element and Monte Carlo convergence rates. Another is an

adaptive algorithm developed by Gerstner and Griebel [9, 16, 63, 64] which successively

refines fully-nested cubature.

4.2 Problem Statement

We present a stochastic transport problem on which to demonstrate method convergence.

We choose the stochastic, one-dimensional, mono-energetic, neutral-particle, steady-

state, and absorption-only transport equation with a normally incident beam source of
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magnitude 1:

µ
∂ψ(x, ω)

∂x
+Σt(x, ω)ψ(x, ω) = 0, (4.11a)

0 ≤ x ≤ L; −1 ≤µ ≤ 1; Σs = 0, (4.11b)

ψ(0, µ) = δ(1− µ), µ > 0; ψ(L, µ) = 0, µ < 0. (4.11c)

In this problem the geometry is known a priori but the magnitude of the total cross

section Σt,n in each material n is assumed to be uniformly distributed about mean

〈Σt,n〉 with total variation Σ̂t,n:

Σt,n(x) = 〈Σt,n〉+ Σ̂t,nξn(ω) ∀ n, ξn ∈ U(−1, 1) ∀ n. (4.12)

The stochastic dimensionality D is then equal to the number of unique materials which

have a random cross section.

We choose problem transmittance, T , as our QoI, largely because it is easy to calculate

analytically for this problem. We choose problem parameters for a two-dimensional (two-

material) problem in the stochastic domain such that the average contribution to the

attenuation of the particles from each material is equal but the effects of the uncertainty

from each material are not equal. This creates an intuitive and anisotropic problem.

We allot each material equal length in the slab beginning from the left side of the slab:

∆x1 = ∆x2, where xn−1 and xn are the left and right boundaries of the slab segment

for material n, the x value at the left side of the slab is equal to zero x0 = 0, the x value

at the right end of the slab is equal to the slab lengh xD = L and

∆xn = xn − xn−1. (4.13)

We also choose cross section values and a slab thickness such that the problem is some-

what optically thick, adding shape to the distribution of resulting transmittance values.

The problem parameters chosen are summarized in Table 4.1.
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Table 4.1: Chapter 4 Problem Parameters

Material Index n=1 n=2

〈Σt,n〉 [cm−1] 1 1

Σ̂t,n [cm−1] 0.1 0.9

xn−1 [cm] 0 2.5

xn [cm] 2.5 5

L [cm] 5

To solve transmittance in the physical domain for a set of values ξ we calculate the

optical depth τ of the slab:

τ(ξ) =

D∑
n=1

Σt,n(ξ)∆xn. (4.14)

We then either solve transmittance analytically by evaluating the probability of atten-

uation,

T (ξ) =
J+(L, ξ)

J+(0)
= exp

[
− τ(ξ)

]
, (4.15)

or through Monte Carlo sampling by comparing pseudo-random numbers η against that

probability.

We resolve the solution in the stochastic domain either through random sampling (RS),

stochastic collocation (SC), or from a polynomial chaos model built with coefficients

determined through stochastic collocation (SC-PCE). We choose Gauss-Legendre (GL)

quadrature for numerical, deterministic integration and use Legendre polynomials in our

PCE models.

The simplicity of the problem we have chosen enables us to solve a collection of quanti-

ties analytically, yielding to demonstration of convergence for various solution methods.

We solve moments of the transmission analytically establishing the exact solution for

any moment of the transmittance. We also solve PCE coefficients analytically, so that

convergence of the PCE model with higher orders of truncation can be shown without

bias from error in cubature solves for the PCE coefficients.
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4.2.1 Analytic Solution of Transmittance Flux Moments

Here we solve for moments of the transmittance 〈Tm〉 for our problem analytically.

We begin with the expression for the analytic transmittance in the physical domain

(Eq 4.15),

T (ξ1, ξ2) = e−∆x1Σt,1(ξ1)−∆x2Σt,2(ξ2), (4.16)

and the definition of the stochastic total cross sections (Eq. (4.12)):

Σt,1 = 〈Σt,1〉+ Σ̂t,1ξ1; Σt,2 = 〈Σt,2〉+ Σ̂t,2ξ2. (4.17)

We integrate the moment of the transmittance we are interested in over the probability

density and simplify:

〈
Tm
〉

=

∫ 1

−1

∫ 1

−1
Tm(ξ1, ξ2)

1

2

1

2
dξ1dξ2 (4.18a)

=

∫ 1

−1

∫ 1

−1

1

2

1

2
e−m∆x1Σt,1(ξ1)e−m∆x2Σt,2(ξ2)dξ1dξ2 (4.18b)

= e−m∆x1〈Σt,1〉e−m∆x2〈Σt,2〉
∫ 1

−1

1

2
e−m∆x1Σ̂t,1ξ1dξ1

∫ 1

−1

1

2
e−m∆x2Σ̂t,2ξ2dξ2 (4.18c)

= e−m∆x1〈Σt,1〉e−m∆x2〈Σt,2〉

[
emΣ̂t,1∆x1 − e−mΣ̂t,1∆x1

]
2mΣ̂t,1∆x1

[
emΣ̂t,2∆x2 − e−mΣ̂t,2∆x2

]
2mΣ̂t,2∆x2

(4.18d)

= e−m∆x1〈Σt,1〉e−m∆x2〈Σt,2〉
sinh

[
mΣ̂t,1∆x1

]
mΣ̂t,1∆x1

sinh
[
mΣ̂t,2∆x2

]
mΣ̂t,2∆x2

. (4.18e)

We note that the contribution to the analytic solution of the transmittance moments

from each stochastic dimension is entirely independent such that this expression for an

arbitrary number of stochastic dimensions is

〈
Tm
〉

=
D∏
n=1

e−m∆xn〈Σt,n〉
sinh

[
mΣ̂t,n∆xn

]
mΣ̂t,n∆xn

. (4.19)
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4.2.2 Analytic Solution of PCE Coefficients for Transmission Flux

We also solve PCE coefficients for our problem analytically. We represent the slab

transmittance using a polynomial chaos expansion of Legendre polynomials:

ψ(L, ω) = T (ξ1, ξ2) =

∞∑
i1=0

∞∑
i2=0

ûi1,i2Pi1,i2(ξ1, ξ2). (4.20)

As before, we note the analytic expression for transmittance (Eq 4.15) and the definition

of the stochastic cross sections (Eq. (4.12)):

T (ξ1, ξ2) = e−∆x1Σt,1(ξ1)−∆x2Σt,2(ξ2); (4.21a)

Σt,1 = 〈Σt,1〉+ Σ̂t,1ξ1; Σt,2 = 〈Σt,2〉+ Σ̂t,2ξ2. (4.21b)

Since our probability distributions vary independently, we factor the joint polynomials

into a product of univariate polynomials:

P (ξ1, ξ2) = P (ξ1)P (ξ2). (4.22)

We insert Eqs. (4.21a), (4.21b), and (4.22) into Eq. (4.20), multiply by Legendre poly-

nomials Pj1 and Pj2 , and integrate over the probability density:

1

2
· 1

2
e−∆x1〈Σt,1〉−∆x2〈Σt,2〉

∫ 1

−1
e−∆x1Σ̂t,1ξ1Pj1(ξ1)dξ1

∫ 1

−1
e−∆x2Σ̂t,2ξ2Pj2(ξ2)dξ2

=

∞∑
i1=0

∞∑
i2=0

ûi1,i2(x)

∫ 1

−1

1

2
Pi1(ξ1)Pj1(ξ1)dξ1

∫ 1

−1

1

2
Pi2(ξ2)Pj2(ξ2)dξ2.

(4.23)

We utilize Legendre polynomial orthogonality, re-index back to i1 and i2, and solve for

the PCE coefficients:

ûi1,i2 =

(
2i1 + 1

2
e−∆x1〈Σt,1〉

∫ 1

−1
e−∆x1Σ̂t,1ξ1Pi1(ξ1)dξ1

)
·(

2i2 + 1

2
e−∆x2〈Σt,2〉

∫ 1

−1
e−∆x2Σ̂t,2ξ2Pi2(ξ2)dξ2

)
.

(4.24)

We use ∫
ξbeaξdx = eaξ

b∑
r=0

(−1)r
b! ξb−r

(b− r)! ar+1
, (4.25)
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(Formula 29 on pg. 259 of Ref. [65]) to analytically integrate the exponential with each

term of the polynomial on the RHS of Eq. (4.24).

We note that the contribution to the PCE coefficient from each dimension is independent

such that solving the PCE coefficients for any number of dimensions reduces to

ûi1,...,iD =
D∏
n=1

(
2in + 1

2
e−∆xn〈Σt,n〉

∫ 1

−1
e−∆xnΣ̂t,nξnPin(ξn)dξn

)
. (4.26)

We also note that we can solve for each PCE coefficient ui1,...,iD in this manner, allowing

calculation of any combination of PCE coefficients including anisotropic PCE schemes.

4.3 Demonstration of Error Convergence for Individual

Methods

Here we demonstrate convergence for each of our solvers. We investigate use of Monte

Carlo in the physical domain as well as random sampling, stochastic collocation, and

construction of a polynomial chaos model in the stochastic domain.

4.3.1 Monte Carlo Convergence on Nominal Case

We first demonstrate convergence of our Monte Carlo solver for solutions in the physical

domain. While we would like to solve the transmittance by simulating particles over

the solution to Eq. (4.11) for the entire stochastic domain at once, this is not practical.

We instead choose to simulate particles by sampling against Eq. (4.15) using a set of

values for ξ. We choose a nominal case when ξ = {0, 0} such that each cross section

is equal to its average value. We solve the transmittance analytically to produce the

exact solution against which to compare. We solve exact transmittance moments for

the nominal case using the analytic physical transmittance solution in Eq. (4.15) and

stochastic collocation in the stochastic domain of orders 1: Q = {1, 1}. We then solve

transmittance moments on our nominal case at Q = {1, 1} using an increasing number

of particle histories. By comparing the solution of our nominal case solved analytically

and using Monte Carlo particle simulation, we can generate the error in the mean of the
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transmittance,

εx̂,MC(SC) =
∣∣∣ ESC,Q={1,1}[T ]− ESC,Q={1,1}[TMC ]

∣∣∣; (4.27)

at various numbers of particle histories.

Figure 4.1 provides plots of the convergence of the mean transmittance using two dif-

ferent random number seeds (denoted by MC1 and MC2). Convergence is as N−
1
2 as

expected.
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εx̄,MC2(SC)

R−1
2

Figure 4.1: Convergence of MC Solver

4.3.2 Random Sampling Convergence

Here we demonstrate convergence of random sampling in the stochastic domain. We

solve the physical problem analytically according to Eq. (4.15) at each randomly sampled

point ξ in the stochastic domain. We compare these solutions against the analytic

solution generated in Section 4.2.1. Error terms are defined as

εx̂,RS =
∣∣∣ E[T ]− ERS [T ]

∣∣∣; (4.28)

εs,RS =
∣∣∣√V[T ]−

√
VRS [T ]

∣∣∣. (4.29)
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We plot the standard error of the mean for random sampling s〈T 〉 and note that it serves

as a decent estimator for the error in the QoI average εx̂,RS . Figures 4.2 and 4.3 each

plot the convergence of the mean, the standard error of the mean, the convergence of the

standard deviation, and a R−
1
2 line for reference using different random number seeds.

Convergence is as R−
1
2 as expected.
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Figure 4.2: Convergence of RS Solver
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Figure 4.3: Convergence of RS Solver

4.3.3 Stochastic Collocation Convergence

We next demonstrate convergence of our stochastic collocation solver. We solve the

physical problem analytically according to Eq. (4.15) at each deterministically sampled

cubature node ξ(q) in the stochastic domain. We compare these solutions against the

analytic solution generated in Section 4.2.1. Error terms are defined as

εx̂,SC =
∣∣∣ E[T ]− ESC [T ]

∣∣∣; (4.30)

εs,SC =
∣∣∣√V[T ]−

√
VSC [T ]

∣∣∣. (4.31)

We plot convergence of the mean and standard deviation of the solution for our isotropic

stochastic collocation (iSC) solver as a function of the number of nodes (solves) in

Figure 4.4. We observe the expected exponential convergence of both quantities.
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Figure 4.4: Convergence of Isotropic Stochastic Collocation Solver

Next we investigate the use of anisotropic stochastic collocation (aSC). We plot the iSC

error terms for reference along with select aSC points and allow the notation [Q1, Q2]

to denote quadrature orders Q = {Q1, Q2}. We plot errors in the quantity of interest

mean in Figure 4.5 and the QoI standard deviation in Figure 4.6.
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Figure 4.5: Convergence of Anisotropic Stochastic Collocation Solver for QoI Mean
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Figure 4.6: Convergence of Anisotropic Stochastic Collocation Solver for QoI Stan-
dard Deviation

We note that a well-chosen aSC cubature scheme for this anisotropic problem yields

smaller errors for the same number of solves than iSC and that the converse is true as

well. For a truly isotropic problem the optimal cubature is isotropic. In other cases

there is the potential to be more or less efficient than the iSC solve based on the order

chosen in each dimension. For example, aSC orders of Q = {5, 9} produce errors on

par with Q = {9, 9} while requiring 45 problem evaluations as opposed to 81. For

this problem the variation in the solution due to the variation in the input in the first

dimension is well resolved with a 5th-order quadrature. Conversely Q = {9, 5} produces

errors on par with Q = {5, 5}, while requiring more problem evaluations. The second

dimension appears to be resolved at a quadrature order of nine. This same type of

behavior can be observed in the error at other collocation points. The quadrature order

in each dimension could be treated as a parameter to be converged to a chosen tolerance.

We consider that beyond the scope of this work, but note that such an approach could

help identify the most efficient combination of solution methods and method parameters

available for a chosen tolerance.
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4.3.4 Polynomial Chaos Truncation Convergence

Here we demonstrate convergence of a polynomial chaos expansion model of the response

with successively higher truncation order. We solve PCE coefficients for our problem

analytically as discussed in Section 4.2.2 and evaluate mean and standard deviation

of the surface using Eqs. (3.54) and (3.57b). We compare these solutions against the

analytic solution generated in Section 4.2.1. Error terms are defined as

εx̂,PCE =
∣∣∣ E[T ]− EPCE [T ]

∣∣∣; (4.32)

εs,PCE =
∣∣∣√V[T ]−

√
VPCE [T ]

∣∣∣. (4.33)

We plot convergence of the mean and standard deviation of the solution as a function

of the number of PCE coefficients in Figure 4.7. Though in Section 4.2.2 we solved an

analytic expression for the PCE coefficients, numerical evaluation of Eq. (4.26) begins

to introduce non-negligible errors in the PCE coefficient values for this problem after a

PCE order of 7. We note that the mean is solved to machine precision with only one

coefficient according to Eq. (3.54).
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Figure 4.7: Convergence of iPCE Truncation
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Next we investigate the use of an anisotropic PCE model as described in Section 3.2.3.2.

We plot isotropic PCE (iPCE) error terms for reference along with selected anisotropic

PCE (aPCE) points. Though we are solving PCE coefficients analytically and not

through use of stochastic collocation, we allow the notation [Q1, Q2], I to mean an I-

order iPCE for which terms are further truncated as they would be when solving using

aSC with quadrature orders Q = {Q1, Q2}. We do not show the convergence of the

mean, as it is fully converged with only the smallest order PCE truncation.
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Figure 4.8: Convergence of aPCE Truncation

We note that a well-chosen aPCE truncation scheme for this anisotropic problem yields

smaller errors for the same number of PCE terms than iPCE and that the converse is

true as well. The first dimension seems to be resolved after about a 4th-order truncation,

whereas the second dimension seems to not be resolved until at least a 9th-order trun-

cation. We show through comparison of the points [3, 1], 3; [1, 3], 3; [5, 3], 5; and [8, 3], 8

that if the error from one dimension dominates, the truncation in that dimension should

be increased. Increasing the order of truncation in the right dimension will decrease the

error. Increasing the order of truncation in the wrong dimension will not significantly

decrease the error, but require more PCE terms.
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4.3.5 Combination of SC and PCE error as SC-PCE Convergence

Here we make a case for converging the error of the combined SC-PCE solver in the

stochastic domain instead of converging the SC and the PCE model solvers individually.

Since we solve PCE coefficients using SC, the maximum order of each PCE coefficient

is limited by the SC quadrature order used to solve for it. In Section 3.2.3.2 we dis-

cussed a version of anisotropic PCE that truncates an isotropic PCE model subject to

the constraints of the selected SC quadrature orders. We proposed two different PCE

truncation orders, before applying the aPCE truncation, which may be the best choice

relative to the underlying SC orders. The first suggested PCE truncation chooses I as

the largest quadrature order used in the SC solve. This selection of PCE truncation

order ensures that at least one PCE term uses the highest order polynomial available

based on the selected SC solves. The second suggested PCE truncation chooses I as the

sum of the quadrature orders used in the SC solve. This selection of PCE truncation

order includes all PCE terms for which the SC solve provides enough information to

solve the coefficient of the term. The second truncation order is more accurate since

it keeps more cross-moment terms in the PCE. If the computational overhead of PCE

operations is negligible compared to the cost of evaluating the physical solver, the sec-

ond suggested truncation order should be used. Polynomial chaos expansion operations

may not always be negligible, however, especially if the problem has many stochastic

dimensions, the SC solve uses large quadrature orders, or the PCE is to be sampled

from many times. In these cases the first suggested truncation order may be preferred.

Beyond this section, except when specified, we use the first of the two proposed PCE

truncations.

Here we plot convergence of the solution yielded by an aPCE model with increasing

orders of initial PCE truncation for chosen SC quadrature orders. We demonstrate for

this problem that either the higher or lower suggested PCE order, subject to truncation

based on the SC solve, is a suitable choice for constructing a joint SC-PCE solver for

which only one error needs to be resovled.
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Here we demonstrate the error of an aPCE truncation error for a chosen set of aSC

quadrature orders. Error terms are defined as

εx̂,PCE(SC) =
∣∣∣ ESC [T ]− EPCE(SC)[T ]

∣∣∣; (4.34)

εs,PCE(SC) =
∣∣∣√VSC [T ]−

√
VPCE(SC)[T ]

∣∣∣. (4.35)

In Figures 4.9, 4.10, and 4.11 we solve εs,PCE(SC,Q) at Q = {2, 4}, Q = {5, 9}, and

Q = {7, 7} for increasing orders of the initial iPCE truncation I. We have chosen these

three cases of PCE convergence to represent three different types of behavior, though in

all cases we come to the same conclusion.
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Figure 4.9: Convergence of aPCE Model at Q = {2, 4}
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In Figure 4.9 we solve εs,PCE(SC,Q={2,4}) for increasing orders of I. We note that for

this problem, according to Figure 4.6, the stochastic collocation error was about 10−4.

The PCE error for I = 4 and I = 6 were about the same, and much smaller than 10−4.

We observe for this and other lower-order cases that the PCE error tends to be very
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small compared to the SC error, suggesting convergence of the SC-PCE error with an

appropriate PCE scheme will be dominated by the SC convergence.

In Figure 4.10 we solve εs,PCE(SC,Q={5,9}) for increasing orders of I. When error of less

than about 10−10 was desired, this cubature was the best bargain (Figure 4.6) and had

a SC error of about 10−12. While the PCE error for I = 14 was smaller than that

for I = 9, both schemes produced PCE truncation errors of less than 10−14. For this

and similar higher-order anisotropic cubature order sets the PCE truncation error for

a reasonable PCE scheme was at least two orders of magnitude less than the SC error,

justifying use of the joint SC-PCE method for converging the joint errors.

In Figure 4.11 we solve εs,PCE(SC,Q={7,7}) for increasing orders of I. For this collocation

point, according to Figure 4.6, the error was a little more than 10−9. Again, the higher

PCE truncation order I = 14 resolved PCE error more than the lower PCE truncation

order I = 7, but both produced PCE truncation errors at least two orders of magnitude

less than the SC error.

In each case–a lower-order aSC case, a higher-order aSC case, and an iSC case–the PCE

truncation error was considerably less than the SC error. In the rest of this work, when

we use the PCE, we choose to converge the SC and PCE errors as one error, and denote

the combined SC and PCE method as SC-PCE.

We show for a problem that the convergence of the aPCE model for a QoI is limited

by the error of the SC solve; PCE polynomial orders which are higher than the SC

quadrature orders should not be used. The computational overhead of operations on

the PCE model is assumed to be small compared to the cost of additional solves of the

physical problem; PCE polynomial orders should be at least as high as the corresponding

SC quadrature orders. Because of these two constraints, the allowed and optimal use of

a PCE truncation scheme is significantly limited by the choice of parameters in the SC

solve, with freedom being only in which allowed higher-order cross moments the user

wants to truncate from the PCE. A reasonable PCE model built using SC cubature has

little freedom in truncation. We therefore propose converging the combined SC-PCE

method as one error source.
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4.3.6 Comparison of RS and SC-PCE Convergence Rates

Here we compare the convergence of random sampling (RS) and stochastic collocation

(SC) for our problem. We compare convergence of transmittance mean and standard

deviation using the random sampling approach from Section 4.3.2 and the convergence

of the isotropic polynomial chaos model built from stochastic collocation solves from

Section 4.3.3 in Figures 4.12 and 4.13. We do not show anisotropic points for the SC-

PCE solve, rather we emphasize for this problem the general convergence trends. In the

case of the mean convergence we plot the standard error of the mean, s〈T 〉, for the two

random sampling convergence data sets generated in Section 4.3.2, and in the case of the

standard deviation we plot both data sets along with an R−
1
2 line to demonstrate the

convergence rate of random sampling. SC-PCE converges to any tolerance with many

less solves than RS for the QoIs for this problem, especially when using an appropriate

aSC grid. This stochastically smooth, two-dimensional problem presents a case in which

SC-PCE outperforms RS.
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Figure 4.13: Convergence of RS and SC-PCE for QoI Standard Deviation

We next demonstrate the curse of dimensionality that SC and therefore SC-PCE suffers

from. As the dimensionality of a problem increases or the complexity of the response

over the stochastic domain increases, the convergence rate for SC-PCE suffers, whereas

the convergence rate for RS does not. In these cases RS may be the more reasonable

choice of a stochastic solver based on convergence.

We demonstrate by creating a 10-dimensional problem similar to our 2-dimensional

problem. We use the same slab length as before, L = 5 cm, but define eight new

materials, each with 〈Σt〉 = 1 cm and either Σ̂t = 0.1 cm or Σ̂t = 0.9 cm. We allot equal

slab length for each material and place them sequentially in the slab as in Table 4.2.

Table 4.2: 10-dimensional Problem Parameters

n 1 2 3 4 5 6 7 8 9 10

〈Σt,n〉 [cm−1] 1 1 1 1 1 1 1 1 1 1

Σ̂t,n [cm−1] 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9

xn−1 [cm] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

xn [cm] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

L [cm] 5
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Figure 4.14: Convergence of RS and SC-PCE Solvers for 10-dimensional Problem

We observe in Figure 4.14 that the convergence of either QoI for SC-PCE is still expo-

nential, but considerably slower. We also observe that the RS convergence is not affected

by the number of stochastic dimensions in the problem. This demonstrates the need to

apply SC and SC-PCE in problems with a fairly low stochastic dimensionality. If there

are many stochastic dimensions, one should either reduce the number of stochastic di-

mensions by doing some sort of sensitivity analysis or simply use a method like random

sampling.

4.4 Demonstration of Multi-Method Convergence of Error

to Tolerance

In this section we demonstrate an approach to the set of solver parameters which solves a

quantity of interest to within a tolerance most efficiently for a chosen set of convergence

parameters TOL and θ. We solve in the physical domain with Monte Carlo particle

simulation, and in the stochastic domain first through random sampling and second by

building a polynomial chaos expansion model from a stochastic collocation solve. We

demonstrate that for this problem SC-PCE solves moments of the response much more

efficiently than RS. Additionally, SC-PCE can generate a PDF of the QoI, something
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SC alone cannot do. The solution attained from RS serves both as a benchmark of the

accuracy of our methods and their implementations and establishes a solution efficiency

against which to compare the efficiency of SC-PCE.

We choose TOL = 10−3 and split the error allowed in the physical and stochastic

domains to be the same:

TOL = TOL1 + TOL2;

TOL1 = TOLθ, TOL2 = TOL(1− θ),

θ =0.5.

(4.36)

When solving with RS in the stochastic domain our error terms are defined as

ε =εs,RS + εs,MC(RS);

εs,RS =
∣∣∣√V[T ]−

√
VRS [T ]

∣∣∣,
εs,MC(RS) =

∣∣∣√VRS [T ]−
√
VRS [TMC ]

∣∣∣.
(4.37)

When solving with SC-PCE in the stochastic domain our error terms are defined as

ε =εs,SC−PCE + εs,MC(SC−PCE);

εs,SC−PCE =
∣∣∣√V[T ]−

√
VSC−PCE [T ]

∣∣∣,
εs,MC(SC−PCE) =

∣∣∣√VSC−PCE [T ]−
√
VSC−PCE [TMC ]

∣∣∣.
(4.38)

In both cases we require convergence of each error below the respective tolerance: for

RS εs,RS ≤ TOL1 and εs,MC(RS) ≤ TOL2 and for SC-PCE εs,SC−PCE ≤ TOL1 and

εs,MC(SC−PCE) ≤ TOL2.

4.4.1 Convergence in the Stochastic Domain

We solve εs,RS with a successively increased number of samples with two different random

number seeds in Figure 4.15 and plot the random sampling convergence along with an

R−
1
2 line, the tolerance TOL1, and the number of samples we choose. The RS error

appears to be converged to the tolerance at about 800 samples; we therefore use 800

samples in our further analysis.
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Figure 4.15: Convergence of RS Solver for Standard Deviation Below Tolerance

We solve εs,iSC−iPCE with a successively increased set of quadrature orders and PCE

truncation orders in Figure 4.16. We also solve at a collection of parameter sets for

εs,aSC−aPCE and plot the error for the set which required the least number of solves but

was below the required tolerance. We plot the tolerance below which the method is to

converge. We use Q = {1, 5} with an anisotropic PCE order of I = 5 in our further

analysis.



www.manaraa.com

Chapter 4. Stochastic Convergence on Random Coefficients 73

100 101 102 103 104

R

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

ε

[1],1
[2],2

[3],3

[4],4

[5],5

[6],6

[7],7

[8],8

[9],9

[1, 5],5

SC-PCE Solver Convergence

εs, iSC− iPCE

TOL1

εs, aSC− aPCE

Figure 4.16: Convergence of SC-PCE Solver for Standard Deviation Below Tolerance

Note that the same error was achieved with 800 solves of our physical problem using RS

and only 5 solves using aSC-aPCE.

4.4.2 Convergence in the Physical Domain

We generate convergence plots of the Monte Carlo solver in the physical domain for

R = 800 random samples in Figure 4.17 using two different random number seeds. Plots

are generated by comparing a Monte Carlo physical solve against an analytic physical

solve for the same 800 realizations. Similarly, we provide convergence plots of the MC

solver for Q = {1, 5}, I = 5 using aSC-aPCE in Figure 4.18 using two different random

number seeds.
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The Monte Carlo error εs,MC(RS) appears to converge below TOL2 at about 400 particle

histories on each of 800 samples. The total number of particle histories required for this
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set of solution methods with our chosen tolerance parameters is therefore about 320,000

particle histories.

The Monte Carlo error εs,MC(SC−PCE) appears to converge below TOL2 at about 5,000

particle histories on each of 5 nodes. The total number of particle histories required

for this set of solution methods with our chosen tolerance parameters is therefore about

25,000 particle histories.

Though the aSC-aPCE solution method required more particle histories on each node

than the RS method, SC-PCE required about 13 times fewer particle histories. It is

likely that the efficiency of the aSC-aPCE method could be improved with a smart

choice of θ by choosing a larger value for θ, placing a tighter tolerance on the exponen-

tially converging stochastic solver. Additionally, should a smaller tolerance be desired,

aSC-aPCE is expected to show even better solve efficiency compared to RS by taking

advantage of the exponential convergence of the aSC-aPCE solver as compared to the

linear convergence of the RS solver.

4.4.3 Comparison of RS and SC-PCE Probability Density Functions

We have chosen parameters for a random sampling and a stochastic collocation poly-

nomial chaos expansion approach which resolve the transmittance standard deviation

within our chosen tolerance of TOL = 1 × 10−3 using splitting parameter θ = 0.5.

Here we generate probability density functions (PDFs) of the transmittance using each

method with the chosen parameters. Whereas the number of samples in a PDF con-

structed using RS is equal to the number of physical solves performed, once the PCE

model is constructed using SC, the SC-PCE method allows many samples to be taken

from the PCE model cheaply.

In Figure 4.19 we plot PDFs yielded with the chosen parameters: R = 800 and N = 400

in the RS case, for a total cost of 320,000 particle histories, and Q = {1, 5} and N = 5000

in the SC-PCE case, for a total cost of 25,000 particle histories. We sample from the

PCE model 100,000 times. The PDFs in general appear to be in agreement, though

the PDF generated using the SC-PCE method was cheaper to generate and is more

well-resolved.
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Figure 4.19: PDFs Generated by RS and SC-PCE, εs ≈ 1× 10−3

In Figure 4.20 we demonstrate that with increased resolution PDFs generated by the

two methods are converging towards the same distribution, and further demonstrate the

efficiency of the SC-PCE approach. For the random sampling case, we choose 10,000

particle histories to be solved on each of 10,000 realizations, and according to Figures 4.15

and 4.17 estimate the bound on the error of the transmittance standard deviation to be

about 2.3× 10−4. In the SC-PCE case, we choose Q = {4, 9} and estimate the error in

the transmittance standard deviation from the SC-PCE representation to be less than

1 × 10−10 based on Figure 4.6. We choose 20,000 histories per realization based on

Figure 4.18 and estimate the bound on the transmittance standard deviation due to

the MC physical solver to be about 2.3 × 10−4, such that the total error using either

method is about the same. Whereas the random sampling method required a total of

1×108 particle histories, the SC-PCE method required a total of about 7.2×105 particle

histories, such that the SC-PCE method was about 139 times cheaper. The methods

produced similar PDFs, though the PDF produced using SC-PCE was more cheaply

generated and well-resolved (100,000 plotted point instead of 10,000).
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Figure 4.20: PDFs Generated by RS and SC-PCE, εs ≈ 2.3× 10−4
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Chapter 5

Transport in Spatially Random,

Continuous Cross Sections

In this chapter we solve the stochastic transport equation for which nuclear cross sections

are modeled as lognormal random processes. We model material density as a continu-

ously varying property such that macroscopic cross sections vary proportionately. Direct

application of this approach is radiation transport calculations through a fluid of non-

constant density, e.g., radiation transport in the upper-atmosphere. Such fields can be

used to approximate spatially discontinuous quantities such as heterogeneous mixing in

radiation shields or porosity of subterranean structures. The domain of problems this

method can be applied to expands when modeling a quantity other than the atomic

density, for example, modeling the temperature gradient in nuclear reactor moderator

or modeling burnup fractions in aging nuclear reactor cores. In this work we only model

the density of a material using a lognormal field.

We create a Gaussian random field described by independent Gaussian random variables

using the Karhunen-Loève (KL) expansion. While a Gaussian field can represent the

mean and variance of a subject field, it also allows for negative values of the field. We

therefore use a lognormal transformation of the field, and create inputs for the Gaussian

distributed KL field, by mapping values of the material density through the lognormal

transformation.

Recent work in the literature includes using a lognormal transformation of the KL ex-

pansion to model material density for radiation transport applications [10, 44], though

78
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this work extends investigation of this idea by accurately and numerically solving KL

eigenvalues and eigenvectors, solving the physical problem using Woodcock Monte Carlo

instead of deterministic methods, performing error analysis, and using a different ap-

proach to stochastic collocation (SC) and the response modeling with the polynomial

chaos expansion (PCE).

In this chapter we state our problem and solution methods, present the lognormal trans-

formation of a Gaussian field, and perform an error convergence study on three stochastic

transport problems.

5.1 Problem Statement

In this chapter we solve the one-dimensional, mono-energetic, neutral-particle, steady-

state, and isotropically scattering transport equation with a normally incident beam

boundary source:

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1

ψ(0, µ) = δ(1− µ), µ > 0; ψ(L, µ) = 0, µ < 0.

(5.1)

We represent random macroscopic cross section r as

Σr(x, ω) = Nat(x, ω)σr, (5.2)

where Nat(x, ω) is the material atom density and σr is the material microscopic cross

section. Modeling the atom density allows modeling of all material properties derived

from the atom density including various macroscopic cross sections.

Equation 5.1 is solved in this chapter using the solution methods discussed in Chapters 2

and 3–Woodcock Monte Carlo (WMC), the Karhunen-Loève (KL) expansion, random

sampling (RS), stochastic collocation (SC), and the polynomial chaos expansion (PCE)–

and the approach to error analysis presented in Chapter 4. Material atom density is

modeled with a lognormal transformation of the Karhunen-Loève expansion and KL

eigenvalues and eigenvectors are solved numerically using the Nyström method. Since
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the KL random variables have a standard normal distribution, the probablists’ Gauss-

Hermite (GH) quadrature rule is used when solving with SC and Hermite polynomials

are used when modeling with the PCE.

5.2 The Karhunen-Loève Representation of Continuous,

Random Cross Sections

To ensure independence of the KL random variables, we choose them as Gaussian-

distributed [9]. Subsequently, the joint probability density can be factored into the

product of univariate probability densities as in Eq. (3.34). This separation simplifies

sampling from the probability distribution, analysis of analytic solutions such as those

presented in Chapter 4 (Eq. (4.19) and Eq. (4.26)), and enables factoring of multivariate

Askey polynomials into the product of univariate polynomials when using the PCE.

Though Gaussian random variables provide these advantages over other distributions,

they also produce a random process which can be negative, an undesirable and un-

physical trait when modeling atom density. We therefore model the random process as

lognormal through a transformation of the Gaussian KL process, preserving second-order

statistics through the transformation.

The Gaussian and lognormal distributions are described by

p(ξ) =
1√
vg2π

exp

[
− (ξ − 〈g〉)2

2vg

]
, and (5.3a)

p(ξ) = exp

 1√
vg2π

exp

[
−(ξ − 〈g〉)2

2vg

] , (5.3b)

respectively, where 〈g〉 is the mean and vg is the variance of variable g. It is readily

observed that values of p(ξ) always exist for which ξ is negative in the Gaussian case,

and that values of p(ξ) never exist for which ξ is negative in the lognormal case. We

demonstrate the positive-preserving property of the lognormal distribution in Figure 5.1

by plotting six Gaussian distributions in the left plot and six lognormal distributions

with the same average and variance in the right plot.
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Figure 5.1: Example Gaussian and Lognormal Probability Distributions

The lognormal distribution is peaked towards smaller values, especially as the distri-

bution average to variance ratio is small. As the distribution average to variance ratio

becomes large the lognormal distribution looks more like the Gaussian distribution with

the same parameters, but in all parameter cases enforces distribution positivity.

5.2.1 The Lognormal Transformation

The lognormal random atom density Nat(x, ω) is related to the Gaussian random process

g(x, ω) by

Nat(x, ω) = exp
[
g(x, ω)

]
. (5.4)

The Gaussian process mean 〈g〉, variance vg, and covariance cg(x, x
′) are solved as a

function of the corresponding lognormal atom density statistics as [10]

〈g〉 = ln

(
〈Nat〉2√

vNat + 〈Nat〉2

)
, (5.5a)

vg = ln

(
vNat

〈Nat〉2
+ 1

)
, and (5.5b)

cg(x, x
′) =

ln
(
cNat(x, x

′)
vNat
〈Nat〉 + 1

)
ln
(

vNat
〈Nat〉2 + 1

) , (5.5c)

where cNat(x, x
′) = CNat(x, x

′)/vNat and cg(x, x
′) = Cg(x, x

′)/vg.
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The atom density is represented as a function of the Gaussian-random KL expansion:

Nat(x, ω) = exp

[
〈g〉+

∞∑
k=1

√
γkuk(x)ξk(ω)

]
, (5.6)

where 〈g〉 is the Gaussian process mean and γk, uk, and ξk are the eigenvalue, eigenvector,

and Gaussian-random variables for each KL term k. The eigenvalues and eigenvectors

are solved using Eq 3.4 as a function of the Gaussian variance and relative covariance:

∫ L

0
vgcg(x, x

′)u(x′)dx′ = γu(x). (5.7)

Macroscopic cross section profiles are yielded by truncating the KL expansion at order

K and multiplying the lognormal random atom density by the correct microscopic cross

section:

Σr(x, ω) = σr exp

[
〈g〉+

K∑
k=1

√
γkuk(x)ξk(ω)

]
. (5.8)

Through Eq. (5.8) realizations of various macroscopic cross sections can be constructed

using only K independent and Gaussian random variables.

We demonstrate realizations of Gaussian and lognormal processes with the same second-

order statistics in Figure 5.2 and, for reference, plot one and two standard deviation

marks from the process mean. It is observed that some Gaussian realizations contain

negative values, whereas lognormal realizations do not. The lognormal realizations con-

tain more values close to zero and have higher peaks.
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Figure 5.2: Fifty Gaussian and Lognormal Realizations (〈g〉 = 0.75, vg = 0.225)
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We test our lognormal KL implementation by constructing many realizations and com-

puting an observed mean and standard deviation across an ensemble of realizations. Ob-

served moment values for an ensemble of 50,000 random process realizations are plotted

at 20 locations throughout the slab in Figure 5.3 using 3, 7, or 15 KL eigenmodes along

with the true process mean and standard deviation for reference.
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Figure 5.3: Observed Mean and Standard Deviation in Lognormal Random Process
Ensemble (〈Σ〉 = 0.75,

√
vΣ =

√
0.225 ≈ 0.474)

Observed moment values converge towards input moment values with higher KL trun-

cation orders. The process standard deviation contains a larger error than the process

mean for the same number of KL terms. Any truncation of a Gaussian KL process would

fully preserve the process mean; introduction of the lognormal transformation, however,

favors values below the mean. Transport results performed over lognormally modeled

cross sections will therefore tend to overestimate transmittance and underestimate re-

flectance.

The oscillatory behavior in the physical domain for the observed ensemble mean and

standard deviation is an artifact of the oscillatory shape of the KL eigenfunctions which

provide variation in the physical domain. Though the KL eigenfunctions used to model

a lognormal process are not strictly sines and cosines as they are for modeling a Gaussian

process (Section 3.1.3.1), the shapes are similar, and provide the oscillating shape.
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5.3 Semi-infinite Slab Reflection Problem

It has been shown that an analytic solution exists for the angular reflective flux profile

when a beam particle source is incident on a semi-infinite slab comprised of material

with a constant scattering ratio regardless of the mixing statistics of the slab material.

We solve this problem for reflectance using a simple Monte Carlo particle simulation

implementation and benchmark our transport-with-scattering implementation against

the more simply generated solution. We demonstrate numerically the preservation of

the reflectance with different mixing statistics by showing a convergence of the solution

generated in multiple ways towards the same value.

5.3.1 Problem Statement and Solution Methods

This problem is described through modification of the stochastic transport equation

stated at the beginning of this chapter (Eq. (5.1)) by assigning the slab’s length L to be

infinitely long and enforcing a constant scattering ratio c:

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x <∞; −1 ≤µ ≤ 1; c =
Σs(x, ω)

Σt(x, ω)

ψ(0, µ) = δ(1− µ), µ > 0.

(5.9)

Dividing by the total cross section removes x dependence from all terms but the first:

µ
∂ψ(x, µ, ω)

Σt(x, ω)∂x
+ ψ(x, µ, ω) =

c

2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x <∞; − 1 ≤ µ ≤ 1

ψ(0, µ) = δ(1− µ), µ > 0.

(5.10)

Integrating the total cross section over x yields the optical thickness τ :

τ(x, ω) =

∫ x

0
Σt(x

′, ω)dx′. (5.11)
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Inserting Eq. (5.11) into Eq. (5.10) along with the boundary conditions

τ(x = 0) = 0, and (5.12a)

τ(x = a) =

∫ a

0
Σt(x

′, ω)dx′, as a→∞, τ →∞. (5.12b)

removes x dependence, and thus stochastic dependence, from the equation:

µ
∂ψ(τ, µ)

∂τ
+ ψ(τ, µ) =

c

2

∫ 1

−1
dµ′ψ(τ, µ′),

0 ≤ τ <∞; − 1 ≤ µ ≤ 1

ψ(0, µ) = δ(1− µ), µ > 0.

(5.13)

It is seen that the angular flux is a function of optical thickness τ and direction of

particle travel µ, but not position in the slab x or sample from the stochastic domain ω.

This relationship is possibly the most useful on the reflective boundary, at which both

the optical thickness and position in slab are equal to zero for all realizations. Though

the entire angular flux distribution at the reflective boundary is therefore analytic for a

value of c, we choose to benchmark our transport-with-scattering implementation using

mean reflectance.

We first solve a benchmark value for mean reflectance using a simple Monte Carlo

transport implementation to effect transport through and tally reflectance on a semi-

infinite slab with a constant scattering ratio and approximate the exact reflectance using

1010 particle histories:

E[R] ≈ E[RBench−MC,N=1010 ]. (5.14)

To demonstrate the simplicity of this optical-thickness-based Monte Carlo transport

calculation, we provide a minimalist Python script for performing the MC computation

in Appendix D.

We also calculate the reflectance for a problem using random sampling and stochastic

collocation in our transport-with-scattering code. Karhunen-Loève truncation K and

Nyström discretization order NNy are arbitrarily chosen along with the number of ran-

dom samples R when solving using random sampling and a set of collocation orders

Q when solving using stochastic collocation since any combination of these parameters
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should converge towards the same value for the reflectance mean with an increased num-

ber of Monte Carlo particle histories N . Both cases are solved with a slab thickness L

of 1000 cm, for which no transmittance tallies were recorded in our simulations. The

atom density average and variance are set to Nat = 1 cm−3 and vNat = 0.3 cm−3, and

the microscopic absorption and scattering cross sections σa and σs are equal to 1 cm2,

producing a scattering ratio of c = 0.5. A correlation length of λc = 1.5 cm and a

KL truncation order of K = 5 are selected. Reflectance is solved for these parameters

using RS with R = 100 realizations and SC with orders Q = {4, 3, 3, 2, 2} for a total

of RSC = 144 realizations. In each case the solution is generated with up to N = 107

particles on each realization.

When performing a convergence study on the reflectance values as the number of particle

histories N is increased, error terms are defined as

εBench−MC =
∣∣∣E[RBench−MC,N=1010 ]− E[RBench−MC,N<1010 ]

∣∣∣, (5.15a)

εMC(RS) =
∣∣∣E[RBench−MC,N=1010 ]− ERS [RMC,N≤107 ]

∣∣∣, (5.15b)

εMC(SC) =
∣∣∣E[RBench−MC,N=1010 ]− ESC [RMC,N≤107 ]

∣∣∣. (5.15c)

5.3.2 Monte Carlo Convergence of Benchmark and Scattering Imple-

mentation

The most converged reflectance values for each method are provided in Table 5.1 with

enough digits to gain an intuitive feel for the convergence of the reflectance values. Based

on the data in this table, we expect the error produced using the RS and SC solves to

be about 10−5 or 10−6.

Table 5.1: Semi-Infinite Slab Reflectance Values for Lognormal KL Implementation

Solution Method Num. Histories N 〈R〉

Benchmark-MC 1.0× 1010 0.11522526

MC(RS) 1.0× 109 0.11522577

MC(SC) 1.44× 109 0.11522148
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Error convergence plots for the error terms defined in Eq. (5.15) are given in Figure 5.4.

A line of the expected Monte Carlo convergence rate is plotted for reference.
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Figure 5.4: Semi-Infinite Slab Reflectance Mean MC Convergence for Lognormal KL
Implementation

The solutions calculated using RS and SC by our transport-with-scattering implementa-

tion converge as a function of the number of total Monte Carlo particle histories towards

the benchmark solution. The error in the most converged solutions is about 10−5 or 10−6

as expected based on the most converged reflectance values. While the most converged

value yielded by the RS method appears to have an error of about 10−6, a quick in-

vestigation of Figure 5.4 informs that the error is only this small due to serendipitous

statistical variation. Were this simulation run with different random number seeds, we

would expect the error to be about 10−5 or less in serendipitous cases like this.

5.4 Uncollided Flux Transmission Problem

Another problem for which solution method error may be carefully studied and our

transport-with-scattering implementation may be benchmarked against a simpler im-

plementation is in the case of an uncollided flux, or absorption-only, calculation. In

such a problem, particles are introduced to the left side of an absorption-only slab and
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the transmittance of a realization can be solved purely as a function of the optical

thickness of the realization. Unfortunately, the lognormal processes of our implementa-

tion do not provide an analytic integration of the total macroscopic cross section, and

integration must be carried out numerically, yielding a “semi-analytic” solution. We

study the sources of error due to modeling the lognormal macroscopic cross sections for

chosen parameters in the resulting stochastic solve using such semi-analytic solutions

and then observe Monte Carlo convergence towards the semi-analytic values using our

transport-with-scattering implementation by setting the scattering cross section equal

to zero.

5.4.1 Problem Statement and Solution Methods

This problem is described as a modification of the stochastic transport equation stated at

the beginning of this chapter (Eq. (5.1)) for which the scattering cross section Σs(x, ω)

is set to zero. By imposing a beam source and removing the possibility of scatter,

the direction of particle travel is restricted to one value and can be removed from the

equation altogether yielding

µ
∂ψ(x, ω)

∂x
+Σt(x, ω)ψ(x, ω) = 0,

0 ≤ x ≤ L

J+(0) = 1, J−(L) = 0.

(5.16)

The stochastically-dependent transmittance is solved as in Eq. (4.15) as a function of

the stochastically-dependent slab optical thickness τ :

T (ξ) =
J+(L, ξ)

J+(0)
= exp

[
− τ(ξ)

]
. (5.17)

The expectation of transmittance moments E[Tm] is solved by integrating over the

stochastic domain

E[Tm] =

∫
ξ

exp
[
− τ(ξ)

]
p(ξ)dξ (5.18)

using a method such as random sampling or stochastic collocation. For lack of an

analytic expression to integrate Σt(x, ω) (Σt(x, ω) = Σa(x, ω) ∀Σs = 0) over x yielding
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τ(ω),

τ(ξ) =

∫ L

0
Σt(x, ξ)dx

=

∫ L

0
σt exp

[
〈g〉+

K∑
k=1

√
γkuk(x)ξk(ξ)

]
dx,

(5.19)

we perform this integral numerically:

τ(ξ) ≈ σt exp
[
〈g〉
] Qx∑
q=1

w(q) exp

[
K∑
k=1

√
γkuk

(
x(q)

)
ξk(ξ)

]
, (5.20)

where Qx is spatial integration quadrature order, w(q) is the weight of quadrature term

q, and x(q) is the x value of quadrature node q. As discussed in Section 3.1.3.2, uk(x)

is not a smooth eigenfunction, but the eigenfunction yielded by one of three interpo-

lation schemes applied to eigenvector uk. The first “discrete” interpolation function

produces a spatially discontinuous eigenfunction according to the discretization order

of the Nyström solve NNy. The second “linear” interpolation function linearly interpo-

lates between the discrete values and is continuous but not differentiable. The “linear”

interpolation scheme defaults to the interpolation given in the Nyström theory near the

edges of the slab. Finally, the “Nyström” interpolation scheme comes from the Nyström

theory, and is the most accurate, but also computationally expensive. We compare the

integration of Eq. (5.20) for a problem with each combination of “discrete” and “linear”

interpolation schemes and Gauss-Legendre (GL) and midpoint rule (MP) numerical in-

tegration. No investigation is made of the “Nyström” interpolation scheme as it becomes

computationally prohibitive with even modest values of NNy.

The investigation of this problem is performed by setting the correlation length and slab

thickness as λc = 1.5 cm and L = 5 cm, the microscopic total cross section as σt = σa = 2

cm2, the average atom density equal to one, 〈Nat〉 = 1 cm−3, and choosing the atom

density variance as vNat = 0.225 cm−3. The KL truncation order is chosen as K = 5

and stochastic collocation quadrature orders are set to Q = {3, 3, 3, 3, 3}. The error

convergence in transmittance values is first observed through semi-analytic solution of

transmittance on individual realizations for the choice of Nyström discretization scheme

(“discrete” or “linear”), Nyström discretization order NNy, numerical spatial integration

scheme (GL or MP), and numerical spatial integration order Qx. Next, transmittance

values are solved using our transport-with-scattering implementation, and Monte Carlo
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convergence is observed towards solutions generated using the semi-analytic solutions

using one set of isotropic, and one set of anisotropic, stochastic collocation orders.

5.4.2 Numerical Spatial Integration Convergence

We solve transmittance values and plot error convergence for Gauss-Legendre (GL) and

midpoint rule (MP) integration of the lognormal macroscopic cross section realizations

which are used to analytically calculate transmittance for both the “discrete” and “lin-

ear” Nyström interpolating schemes. Arbitrary values are chosen for the Nyström dis-

cretization order (NNy = 100), the KL truncation order (K = 5), and the SC quadrature

orders (Q = {3, 3, 3, 3, 3}).

Documentation of the NymPy Python package used to generate Gauss-Legendre quadra-

ture nodes and weights, numpy.polynomial.legendre.leggauss(), claims to be tested up

to Qx = 100; we therefore limit use of GL to a quadrature order of no greater than

Qx = 100. Since the functions we integrate are either discontinuous or continuous but

not differentiable, approximations of the exact solutions are generated using the MP

rule with Qx = 10, 000 for each Nyström interpolation scheme.

When using the “discrete” eigenfunction interpolation scheme exact solutions are ap-

proximated as

E[TNNM−discrete
] ≈ ESC,KL[TNNM−discrete=100,MP,Qx=10,000], and (5.21a)√

V[TNNM−discrete
] ≈

√
VSC,KL[TNNM−discrete=100,MP,Qx=10,000]. (5.21b)

Similarly, when using the “linear” eigenfunction interpolation scheme exact solutions are

approximated as

E[TNNM−linear
] ≈ ESC,KL[TNNM−linear=100,MP,Qx=10,000], and (5.22a)√

V[TNNM−linear
] ≈

√
VSC,KL[TNNM−linear=100,MP,Qx=10,000]. (5.22b)

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.leggauss.html
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Error terms are subsequently defined:

εx̄,MP (NNM−linear) =
∣∣∣ E[TNNM−linear

] − ESC,KL[TNNM−linear=100,MP ]
∣∣∣, (5.23a)

εs,MP (NNM−linear) =
∣∣∣√V[TNNM−linear

] −
√
VSC,KL[TNNM−linear=100,MP ]

∣∣∣, (5.23b)

εx̄,MP (NNM−discrete) =
∣∣∣ E[TNNM−discrete

]− ESC,KL[TNNM−discrete=100,MP ]
∣∣∣, (5.23c)

εs,MP (NNM−discrete) =
∣∣∣√V[TNNM−discrete

]−
√
VSC,KL[TNNM−discrete=100,MP ]

∣∣∣. (5.23d)

The most converged result calculated using each method is provided in Table 5.2.

Table 5.2: Uncollided Flux Transmittance Values for Lognormal KL Implementation
- Converged Optical Thickness Quadrature Solutions

Solution Method Quad. Ord. Qx 〈T 〉 √
vT

MP(NNM-Linear) 10,000 0.000673827496 0.0014071572552

GL(NNM-Linear) 100 0.0006738267 0.0014071542

MP(NNM-Discrete) 10,000 0.000673799 0.001407192

GL(NNM-Discrete) 100 0.0006744 0.0014084

Transmittance errors due to numerical integration as defined in Eq. (5.23) are plotted

in Figures 5.5 and 5.6.
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Figure 5.5: Uncollided Flux Mean Transmittance MC Convergence for Numerical
Optical Thickness Integration Schemes using Nyström Method of Order NNy = 100 for

Lognormal KL Implementation
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Figure 5.6: Uncollided Flux Standard Deviation Transmittance Convergence for
Numerical Optical Thickness Integration Schemes using Nyström Method of Order

NNy = 100 for Lognormal KL Implementation

Neither the transmittance mean nor standard deviation converges monotonically for ei-

ther Nyström interpolation scheme when using Gauss-Legendre quadrature. This is not
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a surprise since the integrands are either discontinuous or C0 continuous. Errors pro-

duced using the GL scheme range from about 10−5 to 10−10 and therefore may or may

not be sufficiently small for a specific application. Gauss-Legendre quadrature performs

better when integrating over the “linear” Nyström interpolation function, which has C0

continuity, than over the “discrete” Nyström interpolation function, which is discon-

tinuous. Additionally, GL quadrature produced a smaller error in the solution for any

quadrature order than MP quadrature over the C0 surface. If the Nyström order NNy

were larger, the function would more closely approximate a smooth function, and we

would expect GL quadrature to produce smaller errors than for the chosen value of NNy.

We choose not to use the GL integration scheme for integrating the discrete lognormal

macroscopic cross sections after this section, however, since the MP integration scheme

integrates more reliably.

Both the transmittance mean and standard deviation converge monotonically for the

“linear” Nyström interpolation scheme, though not for the “discrete” Nyström inter-

polation scheme, when using midpoint rule quadrature. For the “linear” interpolation

scheme, the error at 5,000 samples appears to deviate from an otherwise linear conver-

gence. This behavior is expected since the error is underestimated by the error in the

approximated-as-exact solution. Though the “discrete” interpolation scheme does not

show monotonic convergence, it does appear to be converging at a slower rate than when

using the “linear” interpolation scheme. The “linear” Nyström interpolation scheme

shows a preferable convergence behavior to the “discrete” interpolation scheme, but is

about three times as expensive, such that either may be preferred for a specific problem.

5.4.3 Nyström Discretization Convergence

We solve transmittance values and plot error convergence for Nyström discretization or-

der using the “linear” and “discrete” Nyström interpolation schemes. As in Section 5.4.2,

the KL truncation order (K = 5) and SC quadrature orders (Q = {3, 3, 3, 3, 3}) are cho-

sen arbitrarily, and a midpoint rule quadrature of order Qx = 1000 is chosen.



www.manaraa.com

Chapter 5. Transport in Spatially Random, Continuous Cross Sections 94

The exact solution is approximated using a Nyström discretization order of NNy = 1000

and approximated-as-exact transmittance moments are represented as

E[TNNM−discrete
] ≈ ESC,KL[TNNM−discrete=1000,MP,Qx=1000], (5.24a)√

V[TNNM−discrete
] ≈

√
VSC,KL[TNNM−discrete=1000,MP,Qx=1000], (5.24b)

E[TNNM−linear
] ≈ ESC,KL[TNNM−linear=1000,MP,Qx=1000], and (5.24c)√

V[TNNM−linear
] ≈

√
VSC,KL[TNNM−linear=1000,MP,Qx=1000]. (5.24d)

Error terms are subsequently defined:

εx̄,NNM−linear(MP ) =
∣∣∣ E[TNNM−linear

] − ESC,KL[TNNM−linear,MP,Qx=1000]
∣∣∣,

(5.25a)

εs,NNM−linear(MP )) =
∣∣∣√V[TNNM−linear

] −
√
VSC,KL[TNNM−linear,MP,Qx=1000]

∣∣∣,
(5.25b)

εx̄,NNM−discrete(MP ) =
∣∣∣ E[TNNM−discrete

]− ESC,KL[TNNM−discrete,MP,Qx=1000]
∣∣∣,

(5.25c)

εs,NNM−discrete(MP ) =
∣∣∣√V[TNNM−discrete

]−
√
VSC,KL[TNNM−discrete,MP,Qx=1000]

∣∣∣.
(5.25d)

The most converged transmittance values calculated using each method are provided in

Table 5.3.

Table 5.3: Uncollided Flux Transmittance Values for Lognormal KL Implementation
- Converged NM Discretization Solutions

Solution Method Nyst. Ord. NNy 〈T 〉 √
vT

“Linear” Interpolater 1000 0.0006737411 0.0014070044

“Discrete” Interpolater 1000 0.0006737411 0.0014070044

Since the most converged results were calculated using a Nyström discretization and

numerical quadrature of the same order, NNy = Qx = 1000, the most converged solution

of each is identical. The two interpolation schemes only produce the exact same solution

when NNy = Qx.
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Transmittance errors due to Nyström discretization as defined in Eq. (5.25) are plotted

in Figures 5.7 and 5.8.
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Figure 5.7: Uncollided Flux Mean Transmittance Convergence for Nyström Dis-
cretization Schemes for Lognormal KL Implementation
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The transmittance mean and standard deviation appear to converge linearly when us-

ing the “linear” Nyström interpolation scheme, and with the same general convergence

rate but not monotonically when using the “discrete” Nyström interpolation scheme.

Such behavior is not surprising when performing numerical integration on a discontin-

uous function. As concluded in Section 5.4.2, the best choice of Nyström interpolation

scheme is likely problem dependent since the “linear” interpolation scheme has preferable

convergence behavior but is roughly three times more expensive.

5.4.4 Monte Carlo Convergence of Scattering Implementation Towards

Uncollided Flux Solution

Having characterized the convergence behavior of transmittance values for an uncollided

flux problem using different Nyström discretization orders and interpolation schemes

and quadrature orders and rules, we now seek to use the semi-analytic uncollided flux

solutions to benchmark our transport-with-scattering Monte Carlo solver.

The “linear” Nyström discretization scheme is selected with a discretization order of

NNy = 100 and the KL truncation order is chosen as K = 5. Benchmark solutions,

used to approximate the exact solutions, are provided using the semi-analytic solve

with a midpoint rule quadrature of order Qx = 1000. Based on the analysis in the

previous sections, the error of these benchmark solutions for the transmittance mean

and standard deviation is roughly 10−7. Error convergence is observed against these

solutions for an isotropic problem with isotropic stochastic collocation (iSC) orders Q =

{3, 3, 3, 3, 3} and an anisotropic problem with anisotropic stochastic collocation (aSC)

orders Q = {5, 4, 3, 2, 2}. A lower- and higher-order polynomial chaos expansion (PCE)

order is chosen, as per the discussion in Section 3.2.3.2; the PCE orders are set to I = 3

and I = 15 respectively in the isotropic case and I = 5 and I = 16 respectively in

the anisotropic case. Polynomial chaos expansion models are built using the stochastic

collocation solves, such that the difference between the SC-PCE and SC solutions is due

to PCE truncation error.
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Exact transmittance expectation values are approximated as

EiSC,KL[T ] ≈ EiSC,KL[TNNM−linear=100,MP,Qx=1000], (5.26a)√
ViSC,KL[T ] ≈

√
ViSC,KL[TNNM−linear=100,MP,Qx=1000], (5.26b)

EaSC,KL[T ] ≈ EaSC,KL[TNNM−linear=100,MP,Qx=1000], and (5.26c)√
VaSC,KL[T ] ≈

√
VaSC,KL[TNNM−linear=100,MP,Qx=1000]. (5.26d)

Error terms are subsequently defined as

εx̄,MC =
∣∣∣ ESC,KL[T ]− ESC,KL[TMC ]

∣∣∣, (5.27a)

εs,MC =
∣∣∣√VSC,KL[T ]−

√
VSC,KL[TMC ]

∣∣∣, (5.27b)

when using SC to generate solutions and similarly

εx̄,MC =
∣∣∣ ESC,KL[T ]− ESC−PCE,KL[TMC ]

∣∣∣, (5.28a)

εs,MC =
∣∣∣√VSC,KL[T ]−

√
VSC−PCE,KL[TMC ]

∣∣∣, (5.28b)

when solving transmittance values from the joint SC-PCE method discussed in Sec-

tion 4.3.5.

The most converged transmittance values calculated using each method are provided in

Table 5.4.

Table 5.4: Uncollided Flux Transmittance Values for Lognormal KL Implementation
- Benchmark and Full Implementation Values

Solution Method N RSC 〈T 〉 √
vT

MC(Quad(Σa(x)),iSC) N/A 243 0.000673829 0.001407160

MC(iSC) 1010 243 0.0006746 0.00140738

MC(iSC-PCE,I=3) 1010 243 0.0006746 0.001407136

MC(iSC-PCE,I=15) 1010 243 0.0006746 0.00140738

MC(Quad(Σa(x)),iSC) N/A 240 0.000669984 0.002023566

MC(aSC) 1010 240 0.00067039 0.002023612

MC(aSC-PCE,I=5) 1010 240 0.00067039 0.00202318

MC(aSC-PCE,I=16) 1010 240 0.00067039 0.002023612
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Transmittance errors due to MC convergence as defined in Eqs. (5.27) and (5.28) are

plotted in Figures 5.9 and 5.10 for the isotropic solves and in Figures 5.11 and 5.12 for

the anisotropic solves.
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Figure 5.9: Uncollided Flux Transmittance Mean MC Convergence for iSC and iSC-
PCE for Lognormal KL Implementation
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Figure 5.10: Uncollided Flux Transmittance Standard Deviation MC Convergence
for iSC and iSC-PCE for Lognormal KL Implementation
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Figure 5.11: Uncollided Flux Transmittance Mean MC Convergence for aSC and
aSC-PCE for Lognormal KL Implementation
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Figure 5.12: Uncollided Flux Transmittance Standard Deviation MC Convergence
for aSC and aSC-PCE for Lognormal KL Implementation

The expected N−
1
2 linear convergence of the MC solver towards the semi-anaytic so-

lution, which contains error of about an order of magnitude or less than the small-

est MC error solved for, is observed in each case. Consequently, we gain confidence
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in our transport-with-scattering implementation. The behavior for the isotropic and

anisotropic cases is similar and is discussed here simultaneously. When solving the

transmittance mean, the lower and higher order PCE models converge in exactly the

same way as one another and the SC solve without building a PCE model. This is

expected since the mean is represented by only the lowest order PCE term such that

the mean should be the same with any truncation of the PCE. The lower and higher

order PCE models do not produce the exact same solutions for the standard deviation,

however. This too is expected, since all PCE terms contribute to the standard deviation,

and the higher-order PCE model contains more terms. As confirmed by an examination

of the numerical data, the higher-order PCE model produces exactly the same solutions

as the SC solve within machine precision. The higher-order PCE model clearly captures

more information from the SC solve, but also contains more PCE terms. The computa-

tional overhead of PCE operations is generally considered to be negligible compared to

the cost of evaluating the physical model, suggesting that the higher-order PCE trunca-

tion should be chosen, but if the cost of operations involving the PCE is not negligible,

which may be the case in problems with many stochastic dimensions D, the lower-order

PCE may be preferred.

5.5 Transport with Scattering Problem

Here we demonstrate on another problem which includes particle scattering. The trans-

mittance standard deviation is converged for each contributing error such that the over-

all error is converged below a chosen tolerance. Once the solver parameters have been

chosen, a suite of transport results are generated including leakage values, internal flux

profiles, and probability density functions (PDFs) of leakage values and selected internal

flux values. All results in this section are computed using our transport-with-scattering

code that has been benchmarked in Section 5.3 using the semi-infinite slab with con-

stant scattering ratio reflectance problem and in Section 5.4 using the uncollided flux

transmittance with a semi-analytic solution problem.
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5.5.1 Problem Statement and Solution Methods

The stochastic transport problem solved here is equivalent to that stated at the beginning

of this chapter (Eq. (5.1)):

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1

ψ(0, µ) = δ(1− µ), µ > 0; ψ(L, µ) = 0, µ < 0.

(5.29)

We choose a problem with a correlation length λc = 1.5 cm, slab thickness L = 5 cm,

and microscopic absorption cross sections σa = σs = 2 cm2, and choose the atom density

average and variance equal to one: 〈Nat〉 = 1 cm−3 and vNat = 1 cm−3. Random sam-

pling (RS), stochastic collocation (SC), and the joint stochastic collocation polynomial

chaos expansion (SC-PCE) method are used on the random variables of the Karhunen-

Loéve (KL) expansion in the stochastic domain and the Monte Carlo (MC) method

with Woodcock sampling is used to solve in the physical domain. Solver parameters are

chosen based on a convergence study of the transmittance standard deviation,
√
V[T ],

for which a 3% relative error is chosen as the tolerance. This relative error is defined as

εsrel,NM−Discrete,KL,MC,SC =

√
V[T ]−

√
VSC,KL,NM−Discrete[TMC ]√

V[T ]
, (5.30)

where SC may also be the joint SC and PCE solver SC-PCE. The “discrete” Nyström

interpolation scheme is selected since the error produced for either Nyström scheme is

expected to be negligible compared to the other errors for the tolerance chosen and the

“discrete” Nyström interpolation scheme is the least expensive interpolation scheme.

The number of Monte Carlo particle histories N required to converge within the cho-

sen tolerance is first estimated by performing a MC convergence study with moderate

parameters chosen for the other solution methods. The number of random samples R

is then similarly estimated, using a number of MC histories N such that the MC error

is smaller than the RS error. The Karhunen-Loève truncation order K and Nyström

discretization order NNy required are then examined in a similar fashion. Subsequently,

error convergence of isotropic stochastic collocation and a PCE model built from that

iSC solve is observed, along with the error of three selected anisotropic solves. Once
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parameters have been chosen, a suite of transport results are generated comparing the

solutions yielded by the various solution methods.

5.5.2 Monte Carlo Convergence

Monte Carlo error convergence of transmittance standard deviation is studied using a

KL truncation order K = 5, a Nyström discretization order of NNy = 100, and 100

random samples (R = 100). The problem is solved twice with different random number

seeds and the most converged solution from each instance is used as the approximation

for the exact solution for the other instance.

The exact solution is approximated using two different Monte Carlo solution instances

(MC1 and MC2):

√
VRS,KL,NM [TMC1 ] ≈

√
VRS,KL,NM [TMC1,N=107 ], (5.31a)√

VRS,KL,NM [TMC2 ] ≈
√
VRS,KL,NM [TMC2,N=107 ]. (5.31b)

Relative errors are defined by comparing solutions using one MC instance against the

most converged value of the other instance:

εsrel,MC1(RS,KL,NM) =

∣∣∣√VRS,KL,NM [TMC2 ]−
√
VRS,KL,NM [TMC1,N<107 ]

∣∣∣√
VRS,KL,NM [TMC2 ]

, (5.32a)

εsrel,MC2(RS,KL,NM) =

∣∣∣√VRS,KL,NM [TMC1 ]−
√
VRS,KL,NM [TMC2,N<107 ]

∣∣∣√
VRS,KL,NM [TMC1 ]

. (5.32b)

The most converged transmittance standard deviations are provided in Table 5.5.

Table 5.5: Transport with Scattering Transmittance Standard Deviation for Lognor-
mal KL Implementation - Converged MC Solutions

Solution Method Num. Part. N
√
vT

MC1(RS,KL,NM) 107 0.0312574

MC2(RS,KL,NM) 107 0.0312335
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Transmittance standard deviation error due to MC convergence as defined in Eq. (5.32)

are plotted in Figure 5.13 along with an N−
1
2 line based on the expected MC conver-

gence rate which has been positioned to function as an estimate of the expected MC

convergence for this problem.
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Figure 5.13: Transport with Scattering MC Convergence for Lognormal KL Imple-
mentation

Though the error for any number of particle histories may be larger or smaller than the

expected error for that number due to statistical variation, the expected N−
1
2 Monte

Carlo convergence rate for each error is observed. Using the plotted approximate conver-

gence line, we choose N = 1.6× 105 histories, yielding a relative error of approximately

7× 10−3, for further use in error analysis.

5.5.3 Random Sampling Convergence

Random sampling error convergence of transmittance standard deviation is studied using

a KL truncation order K = 5, a Nyström discretization order of NNy = 100, and the

number of Monte Carlo particle histories chosen in the previous section, N = 1.6× 105.

The problem is solved twice with different random sampling random number seeds and

the most converged solution from each instance is used as the approximation for the

exact solution for the other instance.
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The exact solution is approximated using two different random sampling solution in-

stances (RS1 and RS2):

√
VRS1(KL,NM)[TMC ] ≈

√
VRS1(KL,NM),R=5×105 [TMC ], (5.33a)√

VRS2(KL,NM)[TMC ] ≈
√
VRS2(KL,NM),R=5×105 [TMC ]. (5.33b)

Relative errors are defined by comparing solutions using one RS instance against the

most converged value of the other instance:

εsrel,RS1(MC,KL,NM) =

∣∣∣√VRS2(KL,NM)[TMC ]−
√
VRS1(KL,NM),R<5×105 [TMC ]

∣∣∣√
VRS2(KL,NM)[TMC ]

,

(5.34a)

εsrel,RS2(MC,KL,NM) =

∣∣∣√VRS1(KL,NM)[TMC ]−
√
VRS2(KL,NM),R<5×105 [TMC ]

∣∣∣√
VRS1(KL,NM)[TMC ]

.

(5.34b)

The most converged transmittance standard deviations are provided in Table 5.6.

Table 5.6: Transport with Scattering Transmittance Standard Deviation for Lognor-
mal KL Implementation - Converged RS Solutions

Solution Method Num. Samp. R
√
vT

RS1(MC,KL,NM) 106 0.03449

RS2(MC,KL,NM) 106 0.03429

Transmittance standard deviation error due to RS convergence as defined in Eq. (5.34)

is plotted in Figure 5.14 along with an R−
1
2 line based on the expected RS convergence

rate which has been positioned to function as an estimate of the expected RS error for

this problem.
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Figure 5.14: Transport with Scattering RS Convergence for Lognormal KL Imple-
mentation

Though the error for any number of random samples may be smaller than the expected

error for that number due to statistical variation, the expected R−
1
2 random sampling

convergence rate for each error is observed. Using the plotted approximate convergence

line, we choose R = 2×105 histories, yielding a relative error of approximately 1×10−2,

for use in further error analysis.

5.5.4 Karhunen-Loève Truncation Convergence

Karhunen-Loève error convergence of transmittance standard deviation is studied using

a Nyström discretization order of NNy = 100 and the number of Monte Carlo particle

histories and random samples chosen in the previous sections: N = 1.6 × 105 and

R = 2× 105.

The exact solution is approximated using K = 10:

√
VKL(RS,NM)[TMC)] ≈

√
VKL(RS,NM),K=10[TMC)]. (5.35)
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The relative error is subsequently defined:

εsrel,KL(RS,MC,NM) =

∣∣∣√VKL(RS,NM)[TMC ]−
√
VKL(RS,NM),K<10[TMC ]

∣∣∣√
VKL(RS,NM)[TMC ]

. (5.36)

The most converged transmittance standard deviation value is provided in Table 5.7.

Table 5.7: Transport with Scattering Transmittance Standard Deviation for Lognor-
mal KL Implementation - Converged KL Solution

Solution Method KL Trun. Ord. K
√
vT

KL(RS,MC,NM) 10 0.03322

Transmittance standard deviation error due to KL truncation convergence as defined in

Eq. (5.36) is plotted in Figure 5.15.

1 2 3 4 5 6 7 8 9 10
K

10-3

10-2

10-1

100

ε

Karhunen-Loeve Truncation Convergence

εsrel,KL(MC,RS,NM)

Figure 5.15: Transport with Scattering KL Truncation Convergence for Lognormal
KL Implementation

Until MC and RS error begin to dominate (< 1.5×10−2), monotonic and possibly linear

convergence is observed. We choose a KL truncation order of K = 7 and estimate

that the error at this KL truncation order is about 8 × 10−3. Though the error here

is dominated by MC and RS error, we consider 8 × 10−3 to be a decent estimation of
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the error for K = 7 based on the observed convergence trend for the lower-order KL

truncation orders.

5.5.5 Nyström Discretization Convergence

Nyström discretization error convergence of transmittance standard deviation using the

“discrete” Nyström interpolation scheme is studied using the chosen number of particle

histories, random samples, and KL truncation order: N = 1.6 × 105, R = 2 × 105, and

K = 7.

The exact solution is approximated using NNy = 300:

√
VNM(RS,KL)[TMC ] ≈

√
VNM(RS,KL),NNy=300[TMC ]. (5.37)

The relative error is subsequently defined:

εsrel,NM(RS,MC,KL) =

∣∣∣√VNM(RS,KL)[TMC ]−
√
VNM(RS,KL),NNy<300[TMC ]

∣∣∣√
VNM(RS,KL)[TMC ]

. (5.38)

The most converged transmittance standard deviation value is provided in Table 5.8

Table 5.8: Transport with Scattering Transmittance Standard Deviation for Lognor-
mal KL Implementation - Converged NM Solution

Solution Method Ny Disc. Ord. NNy
√
vT

NM(RS,MC,KL) 300 0.03347

Transmittance standard deviation error due to Nyström discretization order as defined

in Eq. (5.38) is plotted in Figure 5.16.
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Figure 5.16: Transport with Scattering NM Discretization Convergence for Lognor-
mal KL Implementation

For all relative error data points computed, relative errors are observed that are smaller

than the cumulative error estimate of the other methods ( 2.5 × 10−2). Expecting

the convergence behavior of the Nyström discretization to be similar to that shown in

Figure 5.8 and assuming that the Nyström error at NNy = 20 is in fact equal to error of

the other solution methods involved in this solve (2.5×10−2), we conservatively estimate

the Nyström error to be equal to or less than 2× 10−3.

5.5.6 SC and SC-PCE Convergence

Stochastic collocation and the joint stochastic collocation and polynomial choas expan-

sion error convergence of transmittance standard deviation is studied using the chosen

number of particle histories, KL truncation order, and Nyström discretization order:

N = 1.6 × 105, K = 7, and NNy = 100. Error convergence is observed by increas-

ing the SC quadrature order in each dimension using isotropic SC (iSC) and SC-PCE

(iSC-PCE). The relative error is then plotted for three selected anisotropic SC sets of

quadrature orders.
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The exact solution is approximated using iSC with Q = {7, 7, 7, 7, 7, 7, 7}:

√
VSC(KL,NM)[TMC ] ≈

√
VSC(KL,NM),Q={7,7,7,7,7,7,7}[TMC ]. (5.39)

Relative errors are subsequently defined:

εsrel,SC(MC,KL,NM) =

∣∣∣√VSC(KL,NM)[TMC ]−
√
VSC(KL,NM),Q[TMC ]

∣∣∣√
VSC(KL,NM)[TMC ]

, (5.40a)

εsrel,SC−PCE(MC,KL,NM) =

∣∣∣√VSC(KL,NM)[TMC ]−
√
VSC−PCE(KL,NM),Q,I [TMC ]

∣∣∣√
VSC(KL,NM)[TMC ]

.

(5.40b)

The most converged iSC and iSC-PCE transmittance standard deviation values are

provided in Table 5.9.

Table 5.9: Transport with Scattering Transmittance Standard Deviation for Lognor-
mal KL Implementation - Converged iSC and iSC-PCE Solutions

Solution Method iSC Ord. Q PCE Trunc. Ord. I
√
vT

iSC(MC,KL,NM) 6 N/A 0.033824

iSC-PCE(MC,KL,NM) 6 6 0.033820

Isotropic SC and SC-PCE solutions were generated from the same SC solutions such

that the difference in the values is due to PCE truncation error. The solution generated

using iSC is used as the approximated-as-exact solution in each case when calculating

relative error for SC and SC-PCE solutions.

Transmittance standard deviation error due to SC and SC-PCE quadrature and trun-

cation orders as defined in Eq. (5.40) are plotted in Figure 5.17.
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Figure 5.17: Transport with Scattering SC and SC-PCE Convergence for Lognormal
KL Implementation

Until the error of other system parameters begin to dominate ( 1.7× 10−2) a monotonic

convergence is observed for which the SC-PCE solutions are only minimally different

than the SC solutions. Other than the very crude solution at Q = {2, 2, 2, 2, 2, 2, 2}

and before the error of other system parameters begin to dominate the convergence rate

appears to be exponential, as expected for SC. No relative error estimate is provided

for iSC with Q = {7, 7, 7, 7, 7, 7, 7} since that solve is used to approximate the exact

solution; the error reported for iSC-PCE using this collocation grid provides an estimate

of the PCE truncation error.

The quadrature orders chosen for the three anisotropic solves were chosen arbitrarily

based on some intuition of what orders might provide an efficient solve. In isotropic

and anisotropic cases where the MC, KL, and NM errors dominate the corresponding

SC and SC-PCE values show less agreement. We hypothesize that the PCE model is

therefore rather sensitive to the solutions at the collocation points, and expect the PCE

error to increase as soon as the error from the other system solution methods is greater

than the SC error.

The error for the isotropic case at Q = {5, 5, 5, 5, 5, 5, 5} is about 1.4× 10−2. We expect

the error at Q = {6, 5, 5, 4, 4, 3, 3} to be less than the error of the other solution methods,
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and estimate the relative error at a conservative value of 7× 10−3.

5.5.7 Summary of Convergence Relative Errors

Error due to the number of Monte Carlo (MC) particle histories in the physical solve; the

Karhunen-Loève (KL) truncation and Nyström method (NM) discretization in modeling

of random processes; and the number of samples, quadrature orders, and polynomial

chaos truncation (PCE) order in the random sampling (RS), stochastic collocation (SC),

and joint SC-PCE solves in the stochastic domain is summarized in Table 5.10. Columns

represent five distinct combinations of solution methods for the problem by specifying

what is different, the solver in the stochastic domain, whereas rows display the estimated

error for each solver involved in that combination of solver methods.

Table 5.10: Transport with Scattering Summary of Estimated Transmittance Stan-
dard Deviation Relative Errors for Lognormal KL Implementation

RS iSC iSC-PCE aSC aSC-PCE

MC 7× 10−3 7× 10−3 7× 10−3 7× 10−3 7× 10−3

KL 8× 10−3 8× 10−3 8× 10−3 8× 10−3 8× 10−3

NM 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

RS 1× 10−2 N/A N/A N/A N/A

SC N/A 1.4× 10−3 N/A 7× 10−3 N/A

SC-PCE N/A N/A 1.4× 10−2 N/A 7× 10−3

Total 2.7× 10−2 3.1× 10−2 3.1× 10−2 2.4× 10−2 2.4× 10−2

The transmittance standard deviation relative error for each of the sets of solution meth-

ods with the chosen parameters is about 3%. Since the cost of the physical solver is

generally considered to be the most expensive part of solving a stochastic differential

equation, the number of realizations required to produce the estimated errors in Ta-

ble 5.10 is given in Table 5.11.

Table 5.11: Transport with Scattering Number of Realizations to Converge Trans-
mittance Standard Deviation to Three Percent for Lognormal KL Implementation

RS iSC iSC-PCE aSC aSC-PCE

R 200,000 78,125 78,125 21,600 21,600
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For this problem, quantity of interest, and error tolerance, the anisotropic stochastic

collocation solution method converged the QoI the most efficiently, about three times

more efficiently than the isotropic stochastic collocation solution method and about ten

times more efficiently than the random sampling solution method. If the error tolerance

was smaller, the stochastic collocation methods are expected be even more efficient

than the random sampling method, as they converge exponentially in log space whereas

random sampling converges linearly. If the problem required more KL terms, however,

or higher-order quadrature over each KL random variable, random sampling may be

the most efficient since stochastic collocation suffers from the curse of dimensionality

and thus requires additional solves with an additional number of stochastic dimensions.

Because of the monotonic decrease in the contribution of KL terms, a well-chosen set

of aSC quadrature orders is expected to always be more efficient than iSC quadrature

order sets. It is, however, easier to study the convergence of iSC, and for this reason it

may be preferred over aSC.

We have solved solution method parameters which converge the transmittance standard

deviation to roughly 3%. In the following section, we solve additional transport results

for this problem using the method parameters chosen here for each combination of

solution methods.

5.5.8 Transport Results for Converged Problem

Leakage values, vis., transmittance and reflectance mean and standard deviation, are

provided in Table 5.12 for each of five combinations of solution methods with parameters

chosen in the previous sections.

Table 5.12: Transport with Scattering Leakage Values for Lognormal KL Implemen-
tation

Solution Method 〈R〉 √
vR 〈T 〉 √

vT

RS 0.115139 0.00098 0.01280 0.03347

iSC 0.115122 0.00098 0.01291 0.03334

iSC-PCE 0.115122 0.00064 0.01291 0.03332

aSC 0.115192 0.00100 0.01284 0.03385

aSC-PCE 0.115192 0.00074 0.01284 0.03383
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Transmittance standard deviation values agree within about 1.5%, less than our esti-

mated error of 3%. Transmittance and reflectance mean vary across solution method

combinations even less: 0.9% and 0.06%. While the absolute difference in reflectance

standard deviation among our solution methods is similar in scale to the absolute dif-

ference for other leakage values, the reflectance standard deviation varies by about 56%

among our solution methods. If the reflectance standard deviation is desired to be

known more precisely, system paramers such as the number of particle histories N could

be changed. The fact that the quantity of interest we chose, transmittance standard

deviation, converged within our chosen relative error tolerance while other quantities

of interest did not highlights the importance of assuring convergence for all quantities

truly of interest.

Mean flux values solved using tallies in each of 100 flux tally cells on each realization

using random sampling and stochastic collocation solution methods are plotted for flux

mean in 5.18. No values are plotted from polynomial chaos expansion models since the

PCE models are generated using the SC data already plotted.
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Figure 5.18: Transport with Scattering Mean Internal Flux Profiles for Lognormal
KL Implementation

Similarly, relative standard deviation, calculated as standard deviation divided by mean,

of flux solved in 100 cells using random sampling and stochastic collocation are plotted
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in Figure 5.19.
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Figure 5.19: Transport with Scattering Internal Flux Standard Deviation Profiles for
Lognormal KL Implementation

The solution methods provide very similar flux profiles for which the average flux drops

off nearly linearly in log space and the relative standard deviation grows rapidly at first

as particles become less forward-peaked due to scattering, then grows more slowly as

flux mean decreases. The flux mean drops off nearly two orders of magnitude and the

flux relative standard deviation increases from about 2% to almost 200%. While the

flux profiles are very similar, the largest discrepancy in either plot exists in the relative

standard deviation plot near the transmissive boundary at which the isotropic solution,

which contained the largest error in the transmittance standard deviation, deviates

slightly from the other solutions.

When only desiring the mean or standard deviation of a quantity of interest, there is no

need to build a polynomial chaos expansion (PCE) model, since moment information is

provided from a stochastic collocation (SC) solve and building a PCE model introduces

PCE truncation error. Building a PCE model does, however, provide the benefits of

a surrogate model, such as the ability to sample from the model cheaply to construct

probability density functions (PDFs). Probability density functions generated using

random sampling (RS) are expensive to construct, requiring a physical solve on an
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additional realization for each additional PDF value, whereas once a PCE model is

built, it can be sampled against comparatively cheaply. Here we create PDFs of leakage

values and selected internal cell flux values using the random sampling method, the joint

isotropic SC-PCE method, and the joint anisotropic SC-PCE method.

Probability density functions of transmittance and reflectance, generated using the pa-

rameters which converged the transmittance standard deviation to roughly 3% and sam-

pling from PCE models 106 times (compared to 2×105 leakage values generated by RS),

are plotted in Figures 5.20 and 5.21.
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Figure 5.20: Transport with Scattering Reflectance Probability Density Functions for
Lognormal KL Implementation
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Figure 5.21: Transport with Scattering Transmittance Probability Density Functions
for Lognormal KL Implementation

The isotropic and anisotropic solves generated one and three transmittance values lower

than the lowest shown and the anisotropic solve generated two transmittance values

higher than the highest shown in Figure 5.21. The isotropic solve generated two re-

flectance values higher than the highest shown and the anisotropic solve generated one

reflectance value lower than the lowest shown in Figure 5.20.

Probability density functions generated using the different methods provide similar

shapes, though the PCE models produce negative transmittance values and the shape

of the reflectance peak generated by the PCE models is taller and less wide than the

one generated by RS.

Since these PCE models are being built to represent surfaces which are not polynomial

and are built on probability density functions with infinitely large domains, some samples

will always be misrepresentative of the true response if enough samples are taken. We

expect that the nine apparent outliers (from four million samples) described in the

paragraph preceding this one as well as some of the points that are shown but outside

of the expected bounds, are thus located due to this phenomenon. Perhaps a screening

method may be developed for rejecting samples taken in portions of the stochastic
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domain of sufficiently low probability to remove samples taken from low-probability

portions of the domain where the polynomial fit is very poor.

While some of the data points sampled from the PCE models are expected to be sampled

from low-probability, poorly fit sections of the stochastic domain, these outliers do not

account for the number of transmissive samples which were sampled as negative. It is

expected that this lack of a sharp drop-off at transmittance values near zero would be

improved with more converged system parameters or use of a higher PCE truncation

order such that more of the SC information would be captured in the construction of

the PCE model by keeping more expansion terms.

The PDFs of the reflectance generated by the PCE models do not provide flagrantly

non-physical values as for the transmittance, but the shape of the peak provides less

agreement with the peak generated using RS than the transmittance PDF peak. This

is not altogether an unexpected result since the relative disagreement between the re-

flectance standard deviation produced with different methods was about 56%. The

discrepancy is likely a lack of convergence of the moments of the reflectance, and solver

parameters which converge the problem more would be expected to capture more of this

shape. As in the case of the transmittance, a higher-order PCE truncation would likely

improve the shape as well.

Probability density functions of flux in Cells 1, 50, and 100 out of 100 total cells generated

using the parameters which converged the transmittance standard deviation to roughly

3% sampling from PCE models 106 times (compared to 2 × 105 flux valued generated

by RS), are plotted in Figures 5.22, 5.23, and 5.24.
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Figure 5.22: Transport with Scattering Internal Flux Cell 1 Probability Density
Functions for Lognormal KL Implementation
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Figure 5.23: Transport with Scattering Internal Flux Cell 50 Probability Density
Functions for Lognormal KL Implementation
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Figure 5.24: Transport with Scattering Internal Flux Cell 100 Probability Density
Functions for Lognormal KL Implementation

A total of ten values sampled from PCEs (of six million samples) are not included in

these plots as they exist beyond the bounds chosen for the PDF plots.

The PDFs of flux values in Cell 1 and Cell 100 are similar to the PDFs of reflectance

and transmittance values respectively. This behavior is expected since the flux near

the boundaries is related to the current at the boundaries. The flux in Cell 50 probably

resembles the transmittance flux distribution more than the reflectance distribution, but

is not as similar to the transmittance PDF as the PDF of flux in cell 100. As with the

leakage PDFs, some PCE samples still exist which do not fit cleanly into the PDFs, some

flux values are still sampled as being negative, and the shape of the RS PDF does not

seem to match up exactly with the shape of the PDFs sampled from the PCE models.

Screening of samples from low probability locations in the stochastic domain, solver

parameters which converge errors more, and a higher PCE truncation order would likely

mitigate these PDF discrepancies.

As the Karhunen-Loève expansion was transformed lognormally to remove the possibil-

ity of negative values, a lognormal transformation of the PCE may be equally as useful

to remove the possibility of sampling negative leakage and flux values. Such a trans-

formation would require less effort, since the PCE does not require transformation of
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a covariance function. Such a PCE transformation would in fact only require trivial

modification of coefficient generation (Eq. (3.48)) and PCE evaluation (Eq. (3.42)), and

is likely to be a topic of future work.

In this chapter we demonstrate the use of a lognormal transformation of the Karhunen-

Loève expansion for representation of continuously varying material properties in solving

the stochastic transport equation. Stochastic collocation is used to increase solution ef-

ficiency and the polynomial chaos expansion is used to produce a surrogate model of

the stochastic response which can be sampled from cheaply. Two problems with simpli-

fied physics are presented so that analysis can be performed cheaply and a full imple-

mentation of these methods can be benchmarked. A careful error convergence study is

demonstrated for the transmittance standard deviation, and additional transport results

are shown for the solution methods and parameters which converged the transmittance

standard deviation to a chosen tolerance.

Use of the lognormal KL expansion is shown to be an effective way to represent contin-

uously varying media while creating only purely-positive realizations. Stochastic collo-

cation can improve the efficiency of the solve over random sampling for problems with

a relatively smooth response and low stochastic dimensionality. The polynomial chaos

expansion can be used to create a surrogate model of the response which can be sampled

against to create PDFs of the response.
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Chapter 6

Transport in Spatially Random,

Discontinuous Cross Sections

In this chapter we solve the stochastic transport equation in slabs comprised of two

heterogeneously mixed materials. Material index is modeled as a discontinuous random

field and all other material properties defined as a function of the material index for each

location in the slab. Such mixing arises in plasma and gas mixing in inertial confinement

fusion experiments, and resolving the effects of these randomly mixed materials has

significant ramifications on the attenuation of the photon beams driving the implosion

and thus the yield of the reaction. This type of mixing also affects photon transport

through clouds and subsequently the accuracy of weather modeling, neutron transport

in liquid and gas moderator mixtures in boiling water reactors in turn affecting the

neutron count of the reactor, and in other applications.

As in Chapter 5 we begin by using the Karhunen-Loève (KL) expansion to model a

Gaussian random field, ensuring independence of KL random variables, and transform

to model the process of interest. In this case the process of interest, material index,

is spatially discontinuous consists of one of two values at each point in the slab. The

mapping between the Gaussian process and the process of interest is performed using

the Nataf transformation, preserving second-order statistics.

In this chapter we begin by describing the problem type to be solved, discuss several

approaches to solving transport through spatially random and discontinuous materials,

121
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describe modeling using the Nataf transformation with the Karhunen-Loève expansion,

and examine three problems.

6.1 Problem Statement

In this chapter we solve the one-dimensional, mono-energetic, neutral-particle, steady-

state, and isotropically scattering transport equation with either a normally incident

beam boundary source or an isotropic boundary source:

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω), (6.1a)

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1 (6.1b)

ψ(0, µ) = δ(1− µ), µ > 0; ψ(L, µ) = 0, µ < 0 or (6.1c)

ψ(0, µ) = 2, µ > 0; ψ(L, µ) = 0, µ < 0. (6.1d)

We represent random macroscopic cross section r as

Σr(x, ω) = Σr,z, z(x, ω) ∈ {0, 1}, (6.2)

where z is a discrete-valued random process and denotes either Material 0 or Material

1. Materials are mixed according to Markovian statistics in this work, though mixing

according to other statistical models is a topic of interest for future work.

Equation 6.1 is solved using the solution methods discussed in Chapters 2 and 3–

Woodcock Monte Carlo (WMC), the Karhunen-Loève (KL) expansion, random sam-

pling (RS), stochastic collocation (SC), and the polynomial chaos expansion (PCE)–

and the approach to error analysis presented in Chapter 4. Material index is modeled

with a Nataf transformation of the Karhunen-Loève expansion and KL eigenvalues and

eigenvectors are solved numerically using the Nyström method. Since the KL random

variables have a standard normal distribution, the probablists’ Gauss-Hermite (GH)

quadrature rule is used when solving with SC and probablists’ Hermite polynomials are

used when modeling with the PCE.
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6.2 Binary, Markovian-mixed Materials

Materials are mixed according to Markovian statistics such that the chord lengths Λ0

and Λ1 over an ensemble are distributed exponentially. The probability of material z

for a randomly chosen position x in realization ω of such materials pz is

pz =
Λz

Λ0 + Λ1
. (6.3)

The correlation length of the binary mixture λc is solved as

λc =
Λ0Λ1

Λ0 + Λ1
. (6.4)

Transport through this problem type has been approached in a variety of ways, some

of which are summarized in Ref. [66], but there is still room for more efficient solutions

to a variety of problem cases. In this section we discuss several of the approaches

to effecting transport through these types of material systems including a brute force

method, an approximation, a closure, and another attempt at using the Karhunen-Loève

expansion [39].

6.2.1 Chord Length Sampling for Construction of Binary, Markovian-

mixed Media

The most straightforward approach to solving transport through binary, Markovian-

mixed media in 1D is by randomly sampling from the stochastic domain by constructing

realizations of such media and solving transport results on a large ensemble of realiza-

tions. This approach is reliable and converges towards the correct solution for a quantity

of interest, but the random sampling convergence rate, R−
1
2 , is not particularly fast, es-

pecially when requiring error convergence within a small tolerance. Additionally, while

creating realizations of Markovian-mixed media is straightforward in 1D, the process is

less simple in 2D [67] and even more so in 3D. In spite of the slow convergence rate

and difficulty in multi-D of random sampling through construction of realizations in the

stochastic domain, this approach has remained the most accurate solution method for

problems involving one or two physical dimensions.
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Chord lengths of material z, λz, obey Markovian mixing statistics about average chord

length Λz:

p(λz)dλz =
1

Λz
exp

[
−λz
Λz

]
dλz. (6.5)

A chord length λz of material z can be sampled by transforming the probability density

function in Eq. (6.5) into a cumulative density function by integrating from zero to λz

and sampling using a pseudo-random number η ∈ U(0, 1):

λz = Λz ln

(
1

η

)
, z ∈ {0, 1}. (6.6)

Realizations of binary, Markovian-mixed media are created in 1D by first sampling

which material exists at a slab boundary by comparing a pseudo-random number to

the probability of material, pz, as defined in Eq. (6.3). Material chord lengths are then

sampled according to Eq. (6.6) beginning at the left boundary with the material chosen

to exist there and alternating materials until a material has been designated for every

location in the slab. The last material segment in the slab is truncated at the slab

boundary. Many realizations are created in this manner when solving transport over

binary, Markovian-mixed media using random sampling in the stochastic domain and

transport is solved over each realization. Four such realizations, sampled at instances of

ω and for L = 5 cm, Σ0 = 0.5 cm−1, Σ1 = 1.5 cm−1, p0 = 0.5, and λc = 0.375 cm, are

shown in Figure 6.1.
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Figure 6.1: Four Binary, Markovian-mixed Realizations Generated Using the Chord
Length Sampling Method

6.2.2 The Atomic Mix Approximation

While constructing realizations of binary, Markovian-mixed media is the most straight-

forward way to approach solving transport over such materials, the simplest is to assume

that the materials are mixed homogeneously at the atomic level. An atomic mix (AM)

approximation creates one such homogeneously mixed realization with binary media

averaged material properties:

Σr = p0Σr,0 + p1Σr,1. (6.7)

The AM approximation is cheap, requiring a transport solve on only one realization,

and for this reason it is often performed when the transport solver is expensive, espe-

cially when little is known about the mixing statistics or time has not been invested

to otherwise model the random media. Since only one realization is created, the AM

approximation provides an estimate of response mean values, but no higher moments
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or uncertainty estimates. The AM approximation does best in highly scattering media

when the transport behavior approaches the diffusion limit.

6.2.3 The Levermore-Pomraning Closure

The Levermore-Pomraning (LP) closure, developed in the 1980s [3, 4], creates a system of

two transport equations which approximate the behavior of transport through 1D binary

materials with Markovian mixing. It is exact for purely absorbing materials, but the

accuracy of the closure diminishes as materials become more scattering. The LP closure

can be generalized to yield higher-moment response data, though the implementation

is not trivial for purely absorbing materials [5], and requires an additional closure and

source of error when scattering is present [6]. As a result of this, the LP closure is usually

used to provide an estimate of response mean values and not to provide higher-moments

of the response or uncertainty estimations. It generally produces more accurate results

than the AM approximation, as long as the media are not scattering-dominant.

Shortly after the introduction of the LP closure, a Monte Carlo algorithm was developed

which solves the spatially memory-less equations along with others that are slightly more

accurate by retaining some memory of encountered material interfaces [68]. The LP

Monte Carlo algorithm adds a third distance term to the MC streaming operation–a

sampled distance to material interface. The distance to interface competes with the

distance to slab boundary and distance to collision values to determine what occurs

next; if the distance to interface is the shortest of these values the material simulated

as present is switched and the particle continues streaming with its previous streaming

parameters. Modifications to this algorithm increase accuracy by remembering some of

the otherwise on-the-fly-generated material interface information.

A suite of benchmark results for the chord length sampling method of random sampling

in the stochastic domain, the atomic mix approximation, and the Levermore-Pomraning

closure was published in 1989 [1]. The suite was expanded to include additional response

values and internal particle sources and was solved using the Monte Carlo algorithm in

2011 [2]. At least three researchers are continuing efforts to improve the Levermore-

Pomraning closure in various ways, reporting the most recent advancements for each of

these efforts at a recent conference [69–71].
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6.2.4 Numerical Construction of Karhunen-Loève Random Variable

PDFs

Before the efforts chronicled in the rest of this chapter to model Markovian-mixed media

using the Karhunen-Loève (KL) expansion, we examined use of Eq. (3.5) to populate KL

random variable PDFs using realizations created with the chord length sampling (CLS)

method from which we created realizations of the random media over which to compute

transport results [39]. The hope was that solving the random variable PDFs numerically

based on an ensemble of the realizations faithful to the binary media statistics would

allow for the creation of statistically faithful realizations using the KL expansion. If

few enough KL terms were required to generate sufficiently accurate transport results,

further reduced order techniques could then be applied through use of stochastic col-

location and possibly the polynomial chaos expansion over the KL random variables.

The method would be most useful if after examining a large number of numerically con-

structed KL random variable PDFs, PDFs would then be able to be constructed a priori

without such computation based on input parameters. This approach to transport in

binary, Markovian-mixed media showed some promise of being more accurate than the

AM approximation and LP closure while having the potential to become less expensive

than random sampling using the CLS method through use of stochastic collocation, but

had challenges of its own.

The largest challenge to use of the KL expansion for modeling binary, Markovian-mixed

media through construction of KL random variable PDFs was that realizations at times

contained negative values, a quality unphysical for a nuclear cross section and unbe-

coming for application of Monte Carlo transport. The KL expansion preserves ensemble

second-order statistics, but does not guarantee positivity of realizations–this was the

motivation for the lognormal transformation in Chapter 5. Several approaches were

used to attempt to solve transport results over such realizations including rejection of

realizations containing any negative value, assumption of any negative cross section as

being equal to zero, and a modification of the Woodcock Monte Carlo algorithm based

loosely on the correlated sampling work of Rief [72, 73] in which we performed transport

on the negative cross sections through use of particle weights that were allowed to be neg-

ative. The method of assuming negative cross sections as equal to zero showed promise,

especially when modifying cross section mean values such that the ensemble mean for
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each cross section over the ensemble was preserved to the input value. Transport results

generated in this manner were more accurate than those for which the ensemble mean

was not preserved, but not fully accurate. We hypothesize that preserving the ensemble

variance in a similar way may further improve transport results, but chose not to pursue

this avenue any further. The Monte Carlo algorithm that used particle weights to per-

form transport over negative cross sections produced accurate transport results when

stable, but was prone to becoming unstable due to inordinately large particle weight

magnitudes with even modest amounts of ensemble cross section negativity.

An additional challenge to this method was that, though KL random variables were

uncorrelated, we did not yet know if they were independent, a property only guaranteed

when the KL random variables are Gaussian. A further challenge was that non-Gaussian

KL random variable distributions do not lend for efficient numerical integration using

Gauss-Hermite quadrature; a custom quadrature should be used based on the shape of

the PDF.

We had characterized the shapes of the PDFs enough to propose an a priori expectation

of the shape of the PDFs consisting of a Gaussian distribution and two delta functions

for which each delta function corresponds to the case of a realization containing only one

material or the other and the Gaussian distribution approximates the shape of the PDF

when both materials are present. The height of each delta function in the constructed

PDF is solved by attaining the probability that the first chord length of either material

is at least as long as the slab using Eq. (6.5) and the value at which the delta function

is located is solved by sampling the value on that trivial realization using Eq. (3.5).

The mean and variance of the Gaussian is then solved by integrating over the PDF and

enforcing that the PDF is zero-mean and unit-variance. This approximation is not exact,

but may be sufficient to create an a priori approximation of the KL random variable

PDFs for producing small errors in transport results. This method of modeling random

variable PDFs would enable a custom stochastic collocation quadrature consisting of

Gauss Hermite quadrature over the Gaussian portion of the PDF plus two additional

nodes, one at each delta function. Whether this method of modeling random variable

PDFs a priori is moot, however, unless the cross section negativity issue is addressed.
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6.3 Karhunen-Loève Representation of Discontinuous, Ran-

dom Cross Sections

While methods exist for effecting transport through binary statistical materials with

Markovian mixing, there is still a need for a general, accurate, and efficient method for

many applications. We examine use of a discontinuous implementation of the Karhunen-

Loève (KL) expansion using the Nataf transformation as a possible solution.

Interest in modeling of discontinuous random fields using the transformation of a spec-

tral field has grown in recent years [11–13]. In this work we present modeling binary,

Markovian-mixed materials for radiation transport applications by modeling material

index as a discrete-valued random process

z(x, ω) =


0 if in Material 0

1 if in Material 1,

(6.8)

based on a Karhunen-Loève expansion with Gaussian random variables. Macroscopic

cross sections are modeled as a function of material index z as

Σr(x, ω) = Σr,z =


Σr,0 if in Material 0

Σr,1 if in Material 1.

(6.9)

The material index random process z is normalized to zero mean and unit variance Z:

Z(x, ω) =


p0−1√
p0(1−p0)

if in Material 0

p0√
p0(1−p0)

if in Material 1,

(6.10)

where p0 is the probability that Material 0 exists at randomly chosen values of x and ω.

The normalized and discrete-valued random process has a covariance of

CZ(x, x′) = cZ(x, x′) = E[Z(x)Z(x′)]. (6.11)

The Karhunen-Loève expansion is used to create random field g(x, ω), which through

Nataf’s transformation is mapped to the discrete random field Z(x, ω) and subsequently
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z(x, ω) and finally Σr,z.

6.3.1 The Nataf Transformation

Nataf’s transformation maps values from one field to another such that the cumulative

probability distributions are equal. Using Nataf’s transformation the Gaussian random

field described using the KL expansion

g(z, ω) =

∞∑
k=0

√
γkuk(x)ξk(ω) (6.12)

maps to Z(x, ω) by equating the cumulative probability density functions of the two

distributions, ∫ g∗

−∞

1√
2π

exp

[
− ξ2

2

]
dξ = p0, (6.13)

where g∗ is solved in terms of the inverse of the “error” function [74]:

g∗ =
√

2 erf−1(2p0 − 1). (6.14)

The definition of fields z and Z are then updated, the latter in terms of new function

h(g), as

z(x, ω) =


0 if g(x, ω) < g∗

1 if g(x, ω) > g∗,

(6.15)

and

Z(x, ω) = h(g(x, ω)) =


p0−1√
p0(1−p0)

if g(x, ω) < g∗

p0√
p0(1−p0)

if g(x, ω) > g∗,

(6.16)

The eigenvalues and eigenfunctions γk and uk(x) of the KL expansion in Eq. (6.12) must

be solved from the Fredholm equation

∫
D
cg(x, x

′)u(x′)dx′ = γu(x), (6.17)

in which values of the covariance of the Gaussian field, cg(x, x
′), must first be solved as

a function of values of the normalized material index covariance cZ(x, x′) (Eq. (6.11)).
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The normalized material index covariance cZ(x, x′) is solved as the expectation of the

product of values in the physical domain:

cZ(x, x′) = E[Z(x)Z(x′)] =

∫ ∞
−∞

∫ ∞
−∞

h(g1)h(g2)pg(g1, g2)dg1dg2, (6.18)

where g1 and g2 are values of g(x, ω) at different values of x, vis., x and x′, and pg is the

bivariate Gaussian distribution. Equation 6.18 is written with the bivariate Gaussian

distribution more explicitly as

cZ(x, x′)

=

∫ ∞
−∞

∫ ∞
−∞

h(g1)h(g2)
exp[−((g2

1 − 2cg(x, x
′)g1g2 + g2

2)/(2(1− c2
g(x, x

′))))]

2π
√

1− c2
g(x, x

′)
dg1dg2,

(6.19)

relating the two covariance functions cZ(x, x′) and cg(x, x
′).

The bivariate Gaussian distribution modeled with probabalists’ Hermite polynomials H

is

pg(x, x
′) =

∞∑
i1=0

∞∑
i2=0

ûi1i2Hi1(g1)Hi2(g2)p(g1)p(g2), (6.20)

where p(g1) and p(g2) are the standard Gaussian probability distributions corresponding

to dimensions 1 and 2. Taking advantage of Hermite polynomial orthogonality, discussed

in Appendix C and stated in Eq. (C.5), Eq. (6.20) becomes

ûi1i2 =
1

i1!i2!

∫ ∞
−∞

∫ ∞
−∞

exp[−((g2
1 − 2cgg1g2 + g2

2)/(2(1− c2
g)))]

2π
√

1− c2
g

Hi1(g1)Hi2(g2)dg1dg2,

(6.21)

in which covariance spatial dependence, (x, x′), for simplicity, is not stated explicitly.

Integrating through the use of

∫ ∞
−∞

e(x−y)2
Hm(ax)dx =

√
π

(
1− a2

2

)n
2

Hm

 ay(
1− a2

2

) 1
2

 (6.22)

from [75] as in [11], expansion coefficients are solved:

ûi1i2 =
1

i1!
ci1g δi1i2 . (6.23)
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The bivariate Gaussian is thus represented as

pg(g1, g2) =

∞∑
i1=0

ci1g
i1!
Hi1(g1)Hi1(g2)p(g1)p(g2). (6.24)

Insertion of the Hermite polynomial expansion of the bivariate Gaussian (Eq. (6.24))

into Eq. (6.20), and noting the independence of the Gaussian fields, yields

cZ =

∞∑
i1=0

ci1g
i1!

∫ ∞
−∞

h(g1)Hi1(g1)p(g1)dg1

∫ ∞
−∞

h(g2)Hi1(g2)p(g2)dg1, (6.25)

which further reduces by recognizing that the integrals are equivalent:

cZ =
∞∑
i1=0

ci1g
i1!

(∫ ∞
−∞

h(g)Hi1(g)p(g)dg

)2

. (6.26)

6.3.2 Numerical Evaluation of Discontinuous, Random Cross Sections

Being applied to an isotropic field, the Gaussian process covariance cg(x, x
′) reduces to

cg(r), where r = |x−x′|. To use the Nataf transformation, the Gaussian process covari-

ance cg(r) used by the Karhunen-Loève (KL) expansion must first be solved numerically

according to Eq. (6.26) for values of r. Since we already evaluate the KL Fredholm solve

Eq. (6.17) using the Nyström method (as discussed in Section 3.1.3.2) with a uniform

discretization in physical space, we choose to solve cg(r) at the same NNy locations as

in the Nyström solve.

The Gaussian process covariance, cg(r), is solved at NNy values of r through evaluation

of Eq. (6.26). For each value of r we solve the integral of Eq. (6.26) by splitting it into

two integrals at g∗ so that we are integrating over continuous functions

∫ ∞
−∞

h(g)Hi1(g)p(g)dg =

∫ g∗

−∞
h(g)Hi1(g)p(g)dg +

∫ ∞
g∗

h(g)Hi1(g)p(g)dg, (6.27)

and solve each integral numerically using scipy.integrate.quad(). Based on the investi-

gation of Ilango et al. [11], we truncate the summation at 32 terms. Ilango et al. noted

that there were “numerical problems when [cZ ]≈ 1 and the values of [cg] were interpo-

lated linearly in those situations”. We observe that when cZ is near a value of 1, many

expansion terms are required in Eq. (6.26) to converge the resulting value of cg. When

http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
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not enough terms are kept to converge the value of cg, it has values of greater than 1, an

unusable result for a covariance function. As more terms are kept in the expansion in

Eq. (6.26) with cZ values near one, the error in the numerical integration of the integral

grows such that numerical evaluation of terms is not reliable. We mitigate this numerical

limitations of evaluating Eq. (6.26) for values near 1 by requiring that cg be below 1 and

that the magnitude of the difference in its value evaluated with 31 and with 32 terms

must be less than a tolerance arbitrarily chosen as 10−9. If these criteria are not met we

reject the value of cg yielded and resort to interpolation to approximate these values.

To approximate the values of the Gaussian process covariance function cg(x, x
′) not

solved with accuracy dictated by the screening method described in the previous para-

graph, we use NumPy package scipy.optimize.curve fit() to create a polynomial fit of

cg(x, x
′) using the values of the Gaussian process covariance not rejected and the bound-

ary value of cg(r = 0) = 1. Polynomial fits of increasing order are used to approximate

the values of cg(x, x
′) which were not solved from evaluation of Eq. (6.27). The fit which

minimizes the Frobenius vector norm of the difference between the original process co-

variance cZ(x, x′) and the process covariance reconstructed through Eq. (6.27) at NNy

discrete values c∗Z(x, x′),

||cZ(r)− c∗Z(r)||F ≡

√√√√√NNy∑
j=0

(cZ(rj)− c∗Z(rj))2, (6.28)

evaluated using numpy.linalg.norm() is selected. The Frobenius norm for various poly-

nomial fit orders for a problem defined by L = 5 cm, Σ0 = 0.5 cm−1, Σ1 = 1.5 cm−1,

p0 = 0.5, λc = 2.0 cm, NNy = 100, and K = 20 is shown in Figure 6.2 in which the norm

plotted at a polynomial order of 0 is the norm of the linear fit between (0,1) and the

last value not rejected by our convergence screening method described in the preceding

paragraph.

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.norm.html
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Figure 6.2: Frobenius Norm of Curve Fits for Covariance Values Near One

For this problem the polynomial fit of order nine minimized the Frobenius norm of

the original and reconstructed process covariance vectors. A second-order polynomial

and any polynomial over the order of three produce a smaller value for the Frobenius

norm than the linear interpolation between the covariance boundary and the last trusted

covariance value.

Figure 6.3 plots the original process covariance cZ(r), the Gaussian process covariance

cg(r) including values solved by interpolation, the process covariance solved by recon-

struction through evaluation of Eq. (6.27) c∗Z(r), and selected values of the covariance

reconstructed over a large ensemble of realizations, the observed cZ(r) for the same

problem used in the last paragraph. The plot on the left is generated using linear in-

terpolation between the boundary covariance value and the last trusted value and the

plot on the right is generated using the polynomial fit which minimizes the Frobenius

norm of the difference between the true material index covariance and the material index

covariance solved using polynomial interpolation.
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Figure 6.3: Process and Gaussian process covariance Functions, Using Linear Inter-
polation (left) and the Best Polynomial Fit (right)

The covariance generated using the best polynomial fit reconstructs a covariance closer

to the original material index covariance than the covariance generated using the simple

linear interpolation method. It can be seen that the Gaussian process covariance cg(r)

has a more rounded, concave-down shape using the polynomial fit than when using

the linear interpolation method that appears to be more faithful to the actual Gaussian

process covariance. The covariance yielded by reconstruction over an ensemble of results

is more accurate than through evaluation of Eq. (6.26); we hypothesize this is due to

the same type of numerical issues which necessitate some form of interpolation in the

first place.

While use of the best polynomial fit for interpolation appears to be an improvement

over the linear interpolation of the covariance boundary and last trusted value method

for covariance functions which contain values near 1, ideally an approach should be

developed which is numerically robust for values of cZ(r) much closer to 1 such that

the need for interpolation is minimized or removed altogether. Use of higher-precision

variables may help bridge this gap. An integration scheme better suited for evaluating

the integral in Eq. (6.26) may help, such as a different numerical quadrature or use

of a package which integrates polynomials analytically over a portion of a Gaussian

distribution. A method similar to Richardson’s extrapolation which estimates the final

value of the summation based on a reduction of the contribution of successive terms may

be developed, and a more careful examination of the truncation order or the rejection

tolerance chosen for the summation in Eq. (6.26) may improve the accuracy of numerical

evaluation of cg(r). We hope to further examine this issue in future work.
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Realizations of the discontinuous Karhunen-Loève (KL) expansion are generated through

an updated form of Eq. (6.9):

Σ(x, ω) = Σr,z =


Σr,0 if g(x, ω) < g∗

Σr,1 if g(x, ω) > g∗,

(6.29)

for which the process g(x, ω) is the zero-mean KL expansion

g(z, ω) =
∞∑
k

√
γkuk(x)ξk(ω) (6.30)

with eigenvalues and eigenvectors γk and uk generated using the Gaussian process co-

variance cg(r) and g∗ has been solved as the location in the cumulative distribution

function of the Gaussian distribution equal to p0:

g∗ =
√

2 erf−1(2p0 − 1). (6.31)

Two Gaussian realizations g(x, ω), using the “discrete” Nyström interpolation scheme,

and subsequent cross section realizations for L = 5 cm, Σ0 = 0.5 cm−1, Σ1 = 1.5 cm−1,

p0 = 0.5, λc = 2.0 cm, NNy = 100, and K = 20 are plotted in Figure 6.4 along with the

CDF cutoff value g∗ and process average and one and two standard deviation values.

Figure 6.4: Mapping of Gaussian-based Karhunen-Loève Realizations to Discontinu-
ous Realizations

Anywhere the value of g(x, ω) is less than g∗, Material 0 is chosen and Σt,0 is plotted,

conversely where g(x, ω) is greater than g∗, Material 1 is chosen and Σt,1 is plotted.
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Four such realizations are plotted in Figure 6.5 using K = 15 with the same problem

parameters used to generate Figure 6.1 (L = 5 cm, Σ0 = 0.5 cm−1, Σ1 = 1.5 cm−1,

p0 = 0.5, and λc = 0.375 cm) such that realizations created using the two different

methods can be compared visually.
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Figure 6.5: Four Binary, Markovian-mixed Realizations Generated Using the Discon-
tinuous KL Method

In Figure 6.6, the mean and standard deviation of the random process generated using

the discontinuous KL method is sampled from an ensemble of realizations at 25 locations

throughout the slab along with the true process mean and variance for reference.
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Figure 6.6: Observed Cross Section Moments

The moments are converging towards the input values with a large ensemble of sampled

realizations.

A final plot is provided which shows the material index covariance cZ(r), the Gaussian

process covariance cg(r), and the material index covariance observed by taking samples

over an ensemble of 10,000 realizations c∗Z(r) for L = 10 cm, Σ0 = 0.5 cm−1, Σ1 = 1.5

cm−1, p0 = 0.25, λc = 2.0 cm, and K = 20.
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Figure 6.7: Process, Gaussian, and Sampled Covariances

6.4 Semi-infinite Slab Reflection Problem

A semi-infinite slab constructed of material with a constant scattering ratio and a source

incident on the boundary will produce the same reflection distribution regardless of the

mixing statistics of the slab. We numerically solve a semi-infinite slab problem as a

benchmark of our discontinuous Karhunen-Loève (KL) method and implementation in

a similar manner as in Section 5.3 for the lognormal transformation of the KL expansion.

In this section, as there, Monte Carlo convergence with an increased number of particle

histories is observed for an arbitrary choice of mixing statistics.

6.4.1 Problem Statement and Solution Methods

As shown in Section 5.3, the stochastic transport equation,

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω),

0 ≤ x <∞; −1 ≤µ ≤ 1; c =
Σs(x, ω)

Σt(x, ω)

ψ(0, µ) = δ(1− µ), µ > 0,

(6.32)
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in which the scattering ratio c is constant throughout the physical, x, and stochastic, ω,

domains, the slab continues infinitely in one direction, and a particle source is incident

on the boundary of the slab reduces to

µ
∂ψ(τ, µ)

∂τ
+ ψ(τ, µ) =

c

2

∫ 1

−1
dµ′ψ(τ, µ′),

0 ≤ τ <∞; − 1 ≤ µ ≤ 1

ψ(0, µ) = δ(1− µ), µ > 0.

(6.33)

As can be seen from Eq. (6.33), all dependence on x and ω has been exchanged for

dependence on the optical thickness from the boundary τ . Since the distance in the slab

and optical thickness are equal at x = τ = 0, the flux at the boundary is deterministic

for any realization ω.

We solve a benchmark value for mean reflectance using a Monte Carlo transport im-

plementation to effect transport through and tally reflectance on such a semi-infinite

slab with a constant scattering ratio and approximate the exact reflectance using 1010

particle histories:

E[R] ≈ E[RBench−MC,N=1010 ]. (6.34)

This is the same benchmark Monte Carlo computation as in Section 5.3.

We also calculate the reflectance for a problem using random sampling and stochastic

collocation in our transport-with-scattering code. Karhunen-Loève truncation K and

Nataf/Nyström discretization NNy are arbitrarily chosen along with the number of ran-

dom samples R when solving using random sampling and a set of collocation orders

Q when solving using stochastic collocation since any combination of these parame-

ters should converge towards the same value for the reflectance mean with an increased

number of Monte Carlo particle histories N . Both cases are solved with a slab thick-

ness L of 1,000 cm, for which no transmittance tallies were recorded in our simulations.

Macroscopic total cross sections for the two materials are set to Σt,0 = 0.1 cm−1 and

Σt,1 = 1.5 cm−1, each with scattering ratios of c = 0.5. The probability of Material 0,

the correlation length, and the KL truncation order are set to p0 = 0.6, λc = 1.5 cm, and

K = 5, respectively. Reflectance is solved for these parameters using RS with R = 100

realizations and SC with orders Q = {4, 3, 3, 2, 2} for a total of RSC = 144 realizations.



www.manaraa.com

Chapter 6. Transport in Spatially Random, Discontinuous Cross Sections 141

In each case the solution is generated with up to N = 107 particles histories on each

realization.

When performing a convergence study on the reflectance values as the number of particle

histories N is increased, error terms are defined as

εBench−MC =
∣∣∣E[RBench−MC,N=1010 ]− E[RBench−MC,N<1010 ]

∣∣∣, (6.35a)

εMC(RS) =
∣∣∣E[RBench−MC,N=1010 ]− ERS [RMC,N≤107 ]

∣∣∣, (6.35b)

εMC(SC) =
∣∣∣E[RBench−MC,N=1010 ]− ESC [RMC,N≤107 ]

∣∣∣. (6.35c)

6.4.2 Monte Carlo Convergence of Benchmark and Scattering Imple-

mentations

The most converged reflectance values for each method are provided in Table 6.1. Based

on the data in this table, we expect the error produced using the RS and SC solves to

be about 10−5.

Table 6.1: Semi-Infinite Slab Reflectance Values for Discontinuous KL Implementa-
tion

Solution Method Num. Histories N 〈R〉

Benchmark-MC 1.0× 1010 0.11522526

MC(RS) 1.0× 109 0.11521708

MC(SC) 1.44× 109 0.11521387

Error convergence plots for the error terms defined in Eq. (6.35) are given in Figure 6.8

along with a plot of the expected Monte Carlo convergence rate N−
1
2 .
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Figure 6.8: Discontinuous KL Reflection Benchmark - MC Convergence

The solutions calculated using RS and SC by our transport-with-scattering implemen-

tation converge as a function of the number of total Monte Carlo particle histories

towards the benchmark solution. The error in the most converged solutions is about

10−5 as expected based on the most converged reflectance mean values.

6.5 Uncollided Flux Transmission Problem

The computation of the uncollided flux through a slab, equivalent to transport in purely

absorbing media, serves as a simplified transport problem for observing error convergence

behavior and benchmarking our transport-with-scattering implementation. Transmit-

tance can be computed analytically for a realization generated using Chord Length

Sampling (CLS) or the discontinuous Karhunen-Loève (KL) method as a function of the

optical thickness. The CLS method is used to establish the correct solution for a problem

by analytically computing the transmittance over realizations of absorption-only, binary,

and Markovian-mixed media. Implementation of the discontinuous KL method with the

analytical physical solver is benchmarked against the CLS solutions and a careful study

of the errors inherent in the solution method is performed. This error study is simplified

through use of the analytical physical solver that the uncollided flux problem enables.
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Lastly, we benchmark our transport-with-scattering implementation by observing Monte

Carlo convergence towards the solutions established by the CLS method.

6.5.1 Problem Statement and Solution Methods

This problem is described as a modification of the stochastic transport equation stated

at the beginning of this chapter (Eq. (6.1)) for which the scattering cross sections Σs,z

are set to zero. By imposing a beam source and removing the possibility of scatter,

the direction of particle travel is restricted to one value and can be removed from the

equation altogether yielding

µ
∂ψ(x, ω)

∂x
+Σt(x, ω)ψ(x, ω) = 0,

0 ≤ x ≤ L

J+(0) = 1, J−(L) = 0.

(6.36)

The stochastically dependent transmittance is solved as in Eq. (4.15) as a function of

the stochastically dependent slab optical thickness τ :

T (ξ) =
J+(L, ξ)

J+(0)
= exp

[
− τ(ξ)

]
. (6.37)

The expectation of transmittance moments E[Tm] is solved by integrating over the

stochastic domain

E[Tm] =

∫
ξ

exp
[
− τ(ξ)

]
p(ξ)dξ (6.38)

using a method such as random sampling or stochastic collocation. The optical thickness

τ(ξ) is solved for each realization, corresponding to a set of values for ξ, by integrating

the macroscopic total cross section over the physical domain:

τ(ξ) =

∫ L

0
Σt(x, ξ)dx, Σt(x, ω) = Σa(x, ω) ∀Σs = 0. (6.39)

We perform this integral for each realization by solving the locations xj in the slab at

which the material types z change and summing the product of material chord lengths
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∆xj and absorption cross sections Σt,z:

τ(ξ) =
∑
j

∆xjΣt,z(j) (6.40)

This problem is solved by setting the correlation length and slab thickness as λc = 1 cm

and L = 5 cm. The total cross sections for Material 0 and 1 are set to Σt,0 = Σa,0 = 0.1

cm−1 and Σt,1 = Σa,1 = 1.0 cm−1 and the probability of Material 0 is set to p0 = 0.5.

Transmittance mean and standard deviation are established using the Chord Length

Sampling method and the error in this solution is quantified. A study is made of the

error contributed by random sampling (RS), KL truncation, and Nataf and Nyström

discretization order. Finally Monte Carlo (MC) convergence towards CLS solution is

observed using the transport-with-scattering implementation.

6.5.2 Random Sampling Convergence of Chord Length Sampling Method

The transmittance mean and standard deviation are established using an ensemble of re-

alizations generated with the Chord Length Sampling method. Transmittance is solved

over ensembles of 109 randomly generated realizations using the CLS method. Trans-

mittance mean and standard deviation solved using each ensemble is given in Table 6.2.

Table 6.2: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Chord Length Sampling Solutions

Num. Real. R 〈T 〉 √
vT

Ensemble 1 109 0.13215543 0.159402567

Ensemble 2 109 0.13215461 0.159402434

Random sampling (RS) convergence of the transmittance mean and standard deviation

generated by each ensemble with an increased number of realizations against the solution

provided by the other ensemble are plotted in Figures 6.9 and 6.10.
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Figure 6.9: Mean Transmission Convergence for Random Sampling of Realizations of
Binary Media with Markovian Statistics
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Figure 6.10: Standard Deviation Transmission Convergence for Random Sampling of
Realizations of Binary Media with Markovian Statistics

Each ensemble of 109 realizations produces transmittance mean and standard deviation

values with a relative error of about 10−4. These transmittance values are used as the
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correct solution in the following sections, and relative error is not studied for values

lower than 10−4.

6.5.3 Random Sampling Convergence of Discontinuous KL Method

The error convergence of random sampling in the stochastic domain is observed for the

transmittance mean and standard deviation by modeling stochastic media using a KL

truncation order of K = 5, the “linear” Nyström interpolating function, and a Nataf

and Nyström discretization order of NNy = 100 and evaluating the transmittance for

a realization analytically according to Eq. (6.38). Exact mean and standard deviation

values are solved for these system parameters over 107 realizations, and relative error

against these approximated-as-exact solutions is computed using an independent set

of 3 × 106 realizations. The approximated-as-exact solutions and the most converged

solutions using the ensemble relative error are provided in Table 6.3.

Table 6.3: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Random Sampling Solutions

Solution Method Num. Real. R 〈T 〉 √
vT

RS(KL,NM) 1× 107 0.136349 0.168133

RS(KL,NM) 3× 106 0.136307 0.168046

Convergence of the transmittance values of the second ensemble computed against the

most converged solutions of the first and larger ensemble are plotted in Figures 6.11

and 6.12.
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Figure 6.11: Uncollided Flux Mean Transmittance Convergence for Random Sam-
pling for Discontinuous KL Implementation
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Figure 6.12: Uncollided Flux Standard Deviation Transmittance Convergence for
Random Sampling for Discontinuous KL Implementation

The relative error of each value converges as R−
1
2 as we expect from a random sam-

pling method. We estimate the relative error due to the random sampling solve of the

transmittance mean and transmittance standard deviation to be about 1.4 × 10−3 for
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R = 3×106 realizations using the chosen values of K and NNy. This number of samples

is used in the following analysis and relative error is estimated as 1.4× 10−3.

6.5.4 Karhunen-Loève Truncation Convergence

The Karhunen-Loève truncation order convergence is observed in this section using the

chosen R = 3× 106 samples, the “linear” Nyström interpolation scheme, and Nataf and

Nyström discretization order NNy = 100. Transmittance values generated using the first

Chord Length Sampling ensemble are used to approximate the exact solution. The CLS

values and most converged discontinuous KL values are provided in Table 6.2.

Table 6.4: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Karhunen-Loève Truncation Solutions

Solution Method Num. Real. R KL Trunc. K 〈T 〉 √
vT

CLS 109 N/A 0.13215543 0.159402567

KL(RS,NM) 3× 106 10 0.13215461 0.159402434

Convergence of the transmittance mean and standard deviation for increased KL trun-

cation order K towards the CLS solution are plotted in Figures 6.13 and 6.14
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Figure 6.13: Uncollided Flux Mean Transmittance Convergence for Karhunen-Loève
Truncation for Discontinuous KL Implementation
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Figure 6.14: Uncollided Flux Standard Deviation Transmittance Convergence for
Karhunen-Loève Truncation for Discontinuous KL Implementation

The relative error converges monotonically with an increase in KL truncation order K

and may be linear in log space. Apparent linear convergence of transmittance values is

disrupted as the relative error of the KL truncation approaches the estimated error in

the RS ( 1.4 × 10−3); to observe the KL truncation convergence further more random

samples R should be used. We select a KL truncation order K = 9 and estimate the

transmittance mean relative error as 5×10−3 and the transmittance standard deviation

relative error as 2.14× 10−2.

6.5.5 Nataf and Nyström Discretization Convergence

Error convergence of Nataf and Nyström discretization is observed here for the “dis-

crete” and “linear” Nyström interpolation schemes with R = 3 × 106 samples and KL

truncation order K = 10. With some foresight, the approximated-as-exact solution

used is generated for these parameters with the “discrete” interpolation scheme and

NNy = 300. The approximated-as-exact solutions and the most converged solutions for

which relative error is estimated are provided in Table 6.5.
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Table 6.5: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Nataf and Nyström Discretization Solutions

Solution Method Disc. Ord. NNy 〈T 〉 √
vT

NM-discrete(RS,KL) 300 0.13296 0.16139

NM-discrete(RS,KL) 100 0.13227 0.16046

NM-linear(RS,KL) 100 0.13227 0.16034

Solutions produced with a higher discretization order NNy were used to approximate the

exact solution since the errors are less than the other errors in the system (RS error, KL

truncation error)–calculation of error terms through use of the CLS solution is dominated

by RS and KL truncation error and does not capture the convergence behavior. The

convergence behavior of the relative error is plotted in Figures 6.15 and 6.16.

101 102 103

NNy

10-3

10-2

10-1

ε

Nystrom Discretization Convergence

εx̄rel,NM−Linear

εx̄rel,NM−Discrete

Figure 6.15: Uncollided Flux Mean Transmittance Convergence for Nataf and Nystöm
Discretization for Discontinuous KL Implementation
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Figure 6.16: Uncollided Flux Standard Deviation Transmittance Convergence for
Nataf and Nystöm Discretization for Discontinuous KL Implementation

The relative error due to the Nataf and Nyström discretization is converging for each

Nyström interpolation scheme, and appears to be about the same, 5× 10−3, for NNy =

100. It is possible that the relative error of the “linear” interpolation scheme is being

overestimated by using a “discrete” interpolation scheme to provide the approximated-

as-exact solution. Solution of this problem using the “linear” interpolation scheme with

NNy = 300 was very expensive, however, so the “discrete” interpolation scheme is used

to approximate the relative error of the Nataf and Nyström discretization.

6.5.6 Stochastic Collocation Convergence

Stochastic collocation (SC) quadrature order convergence is observed using the chosen

KL truncation order K = 9 and Nataf and Nyström discretization order NNy = 100

using the “discrete” Nyström interpolation scheme. Transmittance results are solved

using isotropic stochastic collocation (iSC) of increasing quadrature order and two

anisotropic stochastic collocation (aSC) grids chosen arbitrarily based on intuition. The

approximated-as-exact solution is produced using the first Chord Length Sampling en-

semble. Transmittance values generated using CLS, iSC, and aSC are shown in Table 6.6.
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Table 6.6: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Stochastic Collocation Quadrature Order Solutions

Solution Method Quad. Ords. Q 〈T 〉 √
vT

CLS N/A 0.1322 0.1594

iSC(KL,NM) {5,5,5,5,5,5,5,5,5} 0.1304 0.1672

aSC(KL,NM) {5,4,4,3,3,3,2,2,2} 0.1301 0.1643

aSC(KL,NM) {6,5,4,4,3,3,3,2,2} 0.1345 0.1589

Relative error for the iSC and aSC solutions is shown in Figures 6.17 and 6.18. Isotropic

SC relative errors are connected with a line to show the convergence of the iSC solver

solutions.
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Figure 6.17: Uncollided Flux Mean Transmittance Convergence for Stochastic Col-
location Quadrature Orders for Discontinuous KL Implementation
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Figure 6.18: Uncollided Flux Standard Deviation Transmittance Convergence for
Stochastic Collocation Quadrature Orders for Discontinuous KL Implementation

Convergence of the isotropic stochastic collocation transmittance values is not mono-

tonic. This is likely an artifact of integrating a discontinuous function, the transmit-

tance as a function of variation in the stochastic domain, with a quadrature, and the

behavior appears to be similar to that of the optical thickness solved by numerically

integrating a discontinuous function in Figures 5.5-5.8 in Sections 5.4.2 and 5.4.3. The

general trend appears to be one of convergence, though transmittance values solved with

higher quadrature orders would be necessary to confirm this. The anisotropic stochastic

collocation solutions likely suffer from the same phenomenon such that it is difficult

to choose the optimal set of parameters. Their relative errors appear to be less than

the relative error of the isotropic SC solutions in three of the four transmittance values

shown. We include the relative errors produced using the highest quadrature orders in

the error summary in the next section.

We do not include further discussion or analysis of stochastic collocation for this uncol-

lided flux problem, but do present cases for which SC does well using the discontinuous

KL approach when solving published benchmark problems later in this chapter.
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6.5.7 Summary of Convergence Relative Errors

The estimated relative errors for chosen system parameters are summarized in Table 6.7.

Table 6.7: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Summary of Estimated Relative Errors

Solution Method and Params εx̄rel,T εsrel,T

CLS, R = 106 7× 10−5 5× 10−5

RS, R = 3× 106 1.4× 10−3 1.4× 10−3

KL, K = 9 5× 10−3 2.14× 10−2

NM-linear, NNy = 100 5× 10−3 7× 10−3

Total 1.04× 10−2 2.98× 10−2

Based on the parameters we have chosen, we estimate the relative error of the transmit-

tance mean to be about 1% and relative error of the transmittance standard deviation

to be about 3%. These parameters are used in the following section when observing

the Monte Carlo and random sampling convergence of the transport-with-scattering

implementation towards the solutions generated using Chord Length Sampling.

6.5.8 Convergence of Scattering Implementation Towards CLS Solu-

tion

Error estimates for Karhunen-Loève truncation order K and Nataf and Nyström dis-

cretization order with the “linear” Nyström interpolation scheme are provided in the

previous sections. The transport-with-scattering implementation is used here and Monte

Carlo (MC) and random sampling convergence toward the Chord Length Sampling so-

lutions is observed. Relative error due to the Monte Carlo solve is estimated on a

small ensemble of random samples, a number of particle histories is chosen, and random

sampling convergence towards the CLS solutions is shown using the number of particle

histories chosen. This serves as a verification of the discontinuous KL method by com-

paring it against numerical results of the same stochastic problem solved in a different

way and a verification of the coding implementation.
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First the number of Monte Carlo histories required to converge towards the CLS solu-

tions is estimated by solving an ensemble of randomly sampled realizations with R = 100

samples using two different random number seeds for the Monte Carlo solver. The

approximated-as-exact solution is provided using N = 107 particle histories on each

realization and the relative error against this solution is computed using up to 106 par-

ticle histories on each realization. The approximated-as-exact solution for this R = 100

ensemble and the most converged solution for the second computation with a different

random number seed and solved with less histories are shown in Table 6.8.

Table 6.8: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Monte Carlo Transport with Scattering Solutions

Solution Method Num. Part. N 〈T 〉 √
vT

MC(RS,KL,NM) 1× 107 0.130995 0.163030

MC(RS,KL,NM) 1× 106 0.131018 0.163037

Convergence of the transmittance values using the second ensemble towards the solutions

provided by the first is plotted in Figure 6.19.
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Figure 6.19: Uncollided Flux Transmittance Values for Discontinuous KL Implemen-
tation - Monte Carlo Transport with Scattering Solutions
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We choose 3×103 particle histories on each sample such that the estimated MC relative

error for the transmittance mean and standard deviation is less than 1% ( 8× 10−3).

Having selected a number of particle histories with which to solve the stochastic trans-

port equation, random sampling is used to resolve the stochastic domain, and the relative

error computed against the CLS solutions in the random sampling solve with succes-

sively more samples is plotted. The CLS transmittance values used to approximate the

exact solutions along with the most converged transmittance values generated with the

transport-with-scattering solve with N = 3, 000 particle histories, a KL truncation order

of K = 5, and a Nataf and Nyström discretization order of NNy = 100 are provided in

Table 6.9.

Table 6.9: Uncollided Flux Transmittance Values for Discontinuous KL Implementa-
tion - Karhunen-Loève Truncation Solutions

Solution Method Num. Real. R 〈T 〉 √
vT

CLS 109 0.132155 0.159403

RS(MC,KL,NM) 3× 106 0.132367 0.160813

Convergence of transmittance values towards the CLS-generated benchmark solutions is

plotted in Figures 6.20 and 6.21.
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Figure 6.20: Uncollided Flux Transmittance Mean for Discontinuous KL Implemen-
tation - Random Sampling Transport with Scattering Solutions
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Figure 6.21: Uncollided Flux Transmittance Standard Deviation for Discontinuous
KL Implementation - Random Sampling Transport with Scattering Solutions

The expected random sampling convergence of R−
1
2 is observed for the transmittance

mean and standard deviation. Solving with R = 105 samples contributes a relative error

of about 7×10−3, for a total relative error estimate of about 2.5% for the transmittance

mean when solving using the selected parameters (N = 3, 000, K = 9, use of “linear”

Nyström interpolating scheme, and NNy = 100). Similarly, R = 105 samples contributes

a relative error for the standard deviation of about 7 × 10−3, for a total relative error

estimate of about 4.3% for the transmittance standard deviation when solving using

the selected parameters. While the expected random sampling convergence rate of R−
1
2

is observed for the standard deviation, the error computation plateaus at about 1%

relative error. The estimated bound on the error from the other solution methods, as

seen in Table 6.7 for random material modeling methods and earlier in this section for

Monte Carlo particle simulation ( 8 × 10−3), is about 3.6%. For relative error values

as high as about 3.6% this plateau behavior is expected since errors other than the one

being investigated in the convergence plot begin to dominate. It appears that the actual

error in this case for the transmittance mean from the other solution methods is not

more than about 0.7%, since the error convergence plot did not plateau, and that the

transmittance standard deviation relative error from the other methods is about 1%,

since the random sampling convergence did plateau here. These errors are less than
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the error bounds we estimated for the solution methods. Convergence of these solutions

towards the CLS solutions adds confidence in our method and in our transport-with-

scattering implementation.

6.6 Transport with Scattering - Solving the Adams, Larsen,

and Pomraning Benchmark Problems

Not long after interest grew for solving the stochastic transport equation through binary

media with Markovian statistics, Adams, Larsen, and Pomraning developed a set of

benchmark problems [1]. In that work, they solved a set of problems defined by varying

average material chord lengths, cross section values, and slab thickness, using a discrete

ordinates solver. They solved approximated-as-exact solutions by randomly sampling

realizations and effecting transport on each, estimating that the relative error on their

approximated-as-exact solutions is no greater than 1%. They also solved using the

Levermore-Pomraning (LP) closure, and compare their benchmark results with their

LP results.

More recently this benchmark suite was solved by Brantley [2] with a Monte Carlo solver

to lower relative error tolerances and with additional results including atomic mix (AM)

solutions. Results generated using a Monte Carlo solve of the LP closure are labeled

“Algorithm A” in Brantley’s publication.

This benchmark suite serves two purposes for us in this work, the first to benchmark our

method and implementation on a problem with scattering, and the second to compare

the performance of the method against other solution methods for some problems of

interest. The problems in this benchmark suite do not fully characterize the problems

on which this method may be applied, but rather focus on binary, stochastic materials

with exponential covariances and a large difference in total cross section values. It is a

useful set of cases with established value in these types of problems, however, so we seek

to produce more accurate transport results than other approximate methods such as

the atomic mix (AM) model and the Levermore-Pomraning (LP) closure and be more

efficient than the “brute force” method of randomly sampling realizations using the

Chord Length Sampling (CLS) method for at least some cases.
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6.6.1 Problem Statement and Solution Methods

The benchmark suite solves the stochastic transport equation

µ
∂ψ(x, µ, ω)

∂x
+Σt(x, ω)ψ(x, µ, ω) =

Σs(x, ω)

2

∫ 1

−1
dµ′ψ(x, µ′, ω), (6.41a)

0 ≤ x ≤ L; − 1 ≤ µ ≤ 1 (6.41b)

ψ(0, µ) = 2, µ > 0; ψ(L, µ) = 0, µ < 0 (6.41c)

in which an isotropic source is incident on the left boundary of a slab. The suite contains

nine different cases made up of unique combinations of total cross section values Σt,0

and Σt,1, scattering ratios c0 and c1, and mean material chord lengths λ0 and λ1. Each

of these nine cases is solved on a slab of length, L, of 0.1, 1.0, or 10.0 cm. In the Brantley

paper, which expands results for this benchmark suite [2], these nine cases are uniquely

designated with a number and a letter. Cases with the same case number correspond

to those which have the same material chord lengths and total cross section values and

cases with the same letter have the same scattering ratios. We adopt this method for

labeling the cases, but choose to represent the case parameters using the probability of

Material 0 p0 and the process correlation length λc instead of the average chord lengths

for the two materials since these are the parameters the discontinuous KL method uses

and the cases are still uniquely and fully identified. The parameters for the nine cases,

each of which are solved for slabs of three different lengths, are described in Table 6.10

Table 6.10: Benchmark Suite Problem Parameters

Case # λc p0 Σt,0 Σt,1 c0 c1

1a 0.099 0.9 10
99

100
11 0.0 1.0

1b 0.099 0.9 10
99

100
11 1.0 0.0

1c 0.099 0.9 10
99

100
11 0.9 0.9

2a 0.99 0.9 10
99

100
11 0.0 1.0

2b 0.99 0.9 10
99

100
11 1.0 0.0

2c 0.99 0.9 10
99

100
11 0.9 0.9

3a 2.525 0.5 2
101

200
101 0.0 1.0

3b 2.525 0.5 2
101

200
101 1.0 0.0

3c 2.525 0.5 2
101

200
101 0.9 0.9
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Transport is effected on individual realizations using Monte Carlo particle simulation

(MC) with Woodcock sampling. The random media is modeled using the discontinuous

Karhunen-Loève (KL) method presented in this chapter using the Nataf transformation

and solving KL eigenvector values using the Nyström method (NM). Once the random-

ness of the system is characterized by a truncated KL expansion, the solution over the

resulting stochastic domain of finite dimensionality is solved either using random sam-

pling (RS) or stochastic collocation (SC). We reserve for future work the use of the

polynomial chaos expansion (PCE) on this benchmark suite.

6.6.2 Random Sampling and Monte Carlo Convergence

To compare solutions against the benchmark suite the error in the computation must

be understood. In this section RS and MC relative error is estimated for benchmark

problems using case 3c on a slab of thickness L = 10.0 cm. We choose a Nataf and

Nyström discretization order, NNy = 300 and Nyström interpolation scheme, “linear”,

that, based on experience, we expect to produce a relative error smaller than the order

of error we are interested in. Random sampling and Monte Carlo error are estimated by

solving a problem with two ensembles of randomly sampled realizations for an arbitrarily

chosen KL truncation order K = 7 and number of MC particles N = 104. The most

converged solution of one ensemble is used to approximate the exact solution and relative

errors are computed using the other ensemble. The most converged solutions are shown

in Table 6.11.

Table 6.11: Most Converged Random Sampling Solutions for Adams Benchmark
Cases RS and MC Error Estimating

Solution Method Num. Real. R 〈T 〉 √
vT 〈R〉 √

vR

RS(MC,KL,NM) 1× 105 0.11234 0.24617 0.44064 0.10178

RS(MC,KL,NM) 1× 105 0.11014 0.24350 0.44152 0.10056

Random sampling convergence plots are given in Figures 6.22 and 6.23 for leakage value

means and standard deviations. Random sampling convergence lines are provided to

show the approximate RS convergence.



www.manaraa.com

Chapter 6. Transport in Spatially Random, Discontinuous Cross Sections 161

102 103 104 105 106 107

R

10-5

10-4

10-3

10-2

10-1

100

ε

Random Sampling Convergence of Transmittance Values

εx̄rel, RS(MC,N= 104)

εsrel, RS(MC,N= 104)

R−1
2

R−1
2

Figure 6.22: Uncollided Flux Transmittance Values for Discontinuous KL Implemen-
tation - Random Sampling Convergence Estimate Transport with Scattering Solutions
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Figure 6.23: Uncollided Flux Reflectance Values for Discontinuous KL Implementa-
tion - Random Sampling Convergence Estimate Transport with Scattering Solutions

One quickly notes that the relative error values plateau such that the solution has ceased

to further converge. This is the error at which the other errors in the system become

dominant, and while the random sampling relative error continues to get smaller, this
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cannot be seen due to the other errors in the system. Since problem parameters have

been chosen such that the Monte Carlo error is expected to be dominant, the Monte

Carlo error for the number of particles chosen can be approximated as the relative

error at which the RS convergence plateaus. The MC error in these computations is

the difference between the leakage values produced with two different sets of particle

histories, and thus contains MC error of the same magnitude in the approximated-as-

exact solution and the solution used to converge towards that solution. The true MC

error for the number of particle histories chosen is thus likely to be about half of the

value at which the RS convergence plateaus. We conservatively estimate the MC error

on one ensemble as the error at which the plateaus occur, recognizing that the values

due to the Monte Carlo solves could, due to statistical variation, be closer together than

the sum of the two MC errors. The RS error can be approximated for various numbers of

samples for each quantity of interest through extrapolation of the observed convergence.

We estimate RS and MC error and use these estimates to choose the number of random

samples R and the number of particle histories N which must be used to yield a desired

solution relative error. This provides some confidence that solutions near to or far from

benchmark values are not due to statistical happenstance.

We estimate the MC errors for the number of particle histories, N = 1 × 104, based

on the relative errors at which the RS convergence plateaus, and record these error

estimates in Table 6.12.

Table 6.12: Monte Carlo Error Estimates for Benchmark Case

〈T 〉 √
vT 〈R〉 √

vR

Relative Error 1.8× 10−2 1× 10−2 2× 10−3 1.2× 10−2

Extrapolating relative error estimates using the RS error convergence lines in Fig-

ures 6.22 and 6.23 and MC relative error estimates in Table 6.12, we choose to use

R = 200, 000 realizations each solved with N = 100, 000 particle histories for selected

benchmark cases and estimate the RS, MC and total relative error for each quantity of

interest according to the values in Table 6.13
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Table 6.13: Random Sampling and Monte Carlo Error Estimates for Chosen Bench-
mark Solution Parameters

〈T 〉 √
vT 〈R〉 √

vR

RS Relative Error 8× 10−3 5× 10−3 1.3× 10−3 5× 10−3

MC Relative Error 5.7× 10−3 3.2× 10−3 6.3× 10−4 3.8× 10−3

Total Relative Error 1.4× 10−2 8.2× 10−3 1.9× 10−3 8.8× 10−3

6.6.3 Efficacy and Efficiency of Discontinuous KL method on Bench-

mark Suite

Use of the discontinuous KL method is investigated against the nine benchmark cases

and the three slab lengths presented in the Adams, Larsen, and Pomraning paper.

The numerical difficulty present when covariance values are close to 1 presented in

Section 6.3.2 was a limiting factor for a significant number of case and slab length

combinations. Larger slabs allowed the covariance in the slab to become sufficiently

small such that many values of the Gaussian process covariance could be solved, and

the rest could be approximated using a polynomial fit. Smaller slabs did not allow the

covariance in the slab to become small enough to solve values of the Gaussian process

covariance. The lack of ability to solve some of these benchmark cases is not a limitation

of the discontinuous KL method, but a technical challenge. A careful examination of

numerical evaluation of the Gaussian process covariance cg(r) based on values of the

material index covariance cZ(r) in Eq. (6.26) such that covariance values closer to one

can be solved is a topic of future work. The discontinuous KL method was not able to

be used due to this numerical challenge for cases 2a, 2b, 2c, 3a, 3b, or 3c with a slab

length of 1 cm or for any of these cases for a slab length of 0.1 cm.

For the remaining case and slab length combinations, convergence towards the bench-

mark solutions was observed with an increased KL truncation order K. Table 6.14

contains the number of terms that was estimated to produce results about as accurate

as the Levermore-Pomraning closure using R = 5, 000 and N = 5, 000 [2]. It also shows

the number of Gaussian process covariance values that were not able to be solved due

to the numerical difficulty in the evaluating Eq. (6.26), but were instead approximated

through polynomial interpolation.
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Table 6.14: Number of KL Terms Required to Approximate LP Leakage Values
Accuracy

Case Letter Num. Values

Case #, L a b c Interpolated

1,L = 1.0 K ≈ 7 K ≈ 70 K ≈ 10 31/300

1,L = 10.0 K ≈ 70 K ≈ 120 K ≈ 25 3/300

2,L = 10.0 K ≈ 7 K ≈ 15 K ≈ 12 31/300

3,L = 10.0 K ≈ 3 K ≈ 9 K ≈ 5 7/300

In all cases, we observe less accurate solutions with lower truncation orders K and more

accurate solutions with higher truncation orders K, such that this discontinuous KL

method outperforms the LP closure for values of K roughly larger than those shown in

Table 6.14. It is useful to note that the discontinuous KL method provides estimates of

quantity standard deviation values whereas the atomic mix and LP approaches provide

only mean values. Furthermore, this method enables construction of a surrogate model

using the polynomial chaos expansion, whereas the other approximate methods yield

only mean values.

We note that the discontinuous KL method produces mean leakage values approximately

as accurate as the LP closure, the most accurate commonly used approximate method,

with few KL terms for several cases and slab thickness combinations. The two best are

case 3a and 3c with a slab thickness of L = 10. We demonstrate the accuracy of this

method using random sampling (RS) and the efficiency of the method using stochastic

collocation (SC) for these two case and slab length combinations. Leakage values are

computed using the number of random samples R = 2× 105 and Monte Carlo histories

N = 1× 105 such that the RS and MC relative error for each leakage value is estimated

as about 1%. When solving using SC, the relative error due to the MC solution method

is estimated as less than 1%. We choose to solve these two case and slab thickness

combinations using a KL truncation of K = 5. Based on Table 6.14, we expect the

discontinuous KL method to produce more accurate results than the LP closure for case

3a and results about as accurate as the LP closure for case 3c with this KL truncation

order. An anisotropic collocation grid of Q = {5, 4, 4, 3, 3} is chosen based on intuition

for the SC solve for each case. Discontinuous KL leakage results are compared against
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benchmark solutions, atomic mix (AM) solutions, and LP solutions provided in [2] in

Tables 6.15 and 6.16. Relative errors, for which a negative relative error represents an

approximate solution smaller than the benchmark solution, are also provided. In these

tables KLR represents the discontinuous KL method solved using random sampling and

KLS represents the discontinuous KL method solved using stochastic collocation.

Table 6.15: Transmittance Mean Values

〈T 〉 εx̄rel,〈T 〉

Case Bench AM LP KLR KLS AM LP KLR KLS

3a 0.16350 0.06677 0.24038 0.17712 0.17391 -0.592 0.470 0.083 0.064

3c 0.10457 0.00386 0.11967 0.12063 0.12426 -0.963 0.144 0.154 0.188

Table 6.16: Reflectance Mean Values

〈R〉 εx̄rel,〈R〉

Case Bench AM LP KLR KLS AM LP KLR KLS

3a 0.69109 0.78629 0.60759 0.67696 0.67882 0.138 -0.121 -0.020 -0.018

3c 0.44516 0.47819 0.32612 0.43617 0.43240 0.074 -0.267 -0.020 -0.029

The discontinuous KL method produces relative errors less than the AM approximation

for both leakage values in both cases. For case 3a it produces relative errors of about 7%

and 2%, considerably less than the LP method at about 47% and 27%. The discontin-

uous KL method also does well compared to the LP closure for the 3c case, producing

relative errors of about 17% and 3% versus the LP closure’s 14% and 27%. For these

problems, the discontinuous KL method is a viable option for computing leakage means

compared to other approximate methods. It provides additional benefits, including stan-

dard deviation estimates and the ability to create a surrogate model of response values

over the stochastic domain, further promoting its utility.

While the discontinuous KL method may not be more efficient than random sampling

by constructing realizations using the Chord Length Sampling method, it can provide

significant efficiency gains when few enough KL terms are required to approximate the

solution within a chosen tolerance. For these problems, the discontinuous KL method

required about 200, 000 realizations to produce errors of about 2% when using random

sampling, but only 1,200 realizations when using stochastic collocation. Since it is

reasonable to assume that random sampling using the CLS method required roughly
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as many realizations as the discontinuous KL method to achieve a similar error, it is

clear that the discontinuous KL method using stochastic collocation is significantly more

efficient in this case.

Furthermore, the LP closure and use of the CLS method to create realizations both rely

on the Markovian-mixing statistics, producing an exponential covariance function. The

discontinuous KL method does not require an exponential covariance.

In conclusion, we present a Nataf transformation of the KL expansion to model discon-

tinuous, random media for radiation transport applications. The numerical evaluation of

the Gaussian process covariance needed by the KL expansion in order to use the Nataf

transformation contains a numerical challenge in that covariance values near one do

not evaluate very cleanly. More work should be done to evaluate the Gaussian process

covariance for these values. Solutions using the method do converge towards bench-

mark values for problems including reflectance on a semi-infinite slab of materials with

a constant scattering ratio, computation of transmittance on a slab of absorption-only

media, and on the benchmark suite published by Adams, Larsen, and Pomraning. The

discontinuous KL method provides advantages over some other approximate methods

by providing higher-order statistics on quantities of interest and the ability to create

a surrogate model. In some cases the discontinuous KL method is considerably more

efficient than random sampling through use of stochastic collocation. In yet other cases,

the discontinuous KL method ought to be a viable approach to modeling geometry when

there is no other statistically faithful, known method. While the usability of the method

may be increased by a more careful approach to solving the Gaussian process covariance,

the efficiency may also be improved through use of dimensional reduction techniques or

more advanced stochastic collocation grids such as grids that are not only anisotropic

but also sparse. The applicability of the method to problems with other covariance

functions is a potentially very useful application of the discontinuous KL method, and

can be investigated not only in 1D problems, but 2D or 3D.
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Conclusions and Future Work

The Karhunen-Loève (KL) expansion has been used to model spatially continuous and

discontinuous random media, reducing the stochastic variability from an uncountably

infinite set, through truncation of the KL expansion, to a finite set of random variables.

Random sampling (RS) and stochastic collocation (SC) were used to solve quantity of

interest (QoI) response values over the remaining stochastic domain. Transport was

solved over KL realizations created at nodes of RS and SC schemes using Monte Carlo

(MC) particle simulation with Woodcock sampling. The polynomial chaos expansion

(PCE) was used to create a surrogate model of the QoI response over the stochastic

domain, enabling construction of a probability density function (PDF) of the QoI by

sampling from the surrogate model cheaply. A lognormal transformation of the Gaus-

sian random process created by the KL expansion was used to model continuous random

media, and a Nataf transformation was used on the Gaussian random process created

by the KL expansion to model discontinuous random media. KL eigenvalues and eigen-

vectors were solved numerically using the Nyström method (NM), and several Nyström

interpolating schemes were investigated such that KL eigenvectors can be sampled from

as eigenfunctions. In these random media cases, and for a purely-absorbing problem

with known geometry but uncertain cross section coefficients, the error contribution to

the QoI of solver methods was examined, helping provide confidence in transport results

and choose solution method parameters for efficient computation.

The error analysis techniques used here enabled a better understanding of the error con-

tributions from each solution method. Such error analysis proved useful in bounding the

167
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total error of the computation and in determining what system parameters to choose

in order to solve efficiently. This was especially true when deciding the KL truncation

order to select, since the number of terms kept in the Karhunen-Loève expansion deter-

mines the resulting number of stochastic dimensions yet to be resolved by RS or SC. The

efficiency of the random sampling method, being dimensionally-agnostic, is not signifi-

cantly affected by the choice of KL truncation order, but the viability of the stochastic

collocation method, and the use of the polynomial chaos expansion built using the SC

method, hinges largely on the number of stochastic dimensions in the problem. There-

fore, especially when using stochastic collocation, it is often advantageous to allow the

KL truncation to contribute much of the total system error in an effort to reduce the

overall cost, making KL truncation error estimates a quantity of special importance.

The lognormal transformation of the KL-modeled random processes proved useful in

modeling continuously varying random media. The prime contributions of this method

were having a statistically based approach with which to model spatially continuous

media while ensuring that cross section values in realizations are always positive. Addi-

tional value to this investigation was that ensembles requiring sufficiently few KL terms

can be solved considerably more efficiently using SC than RS, and that the PCE can be

used to create a surrogate model which, once built, can populate a response PDF much

more efficiently than RS.

The Nataf transformation of the Gaussian random KL expansion was effective in mod-

eling spatially discontinuous random media with Markovian statistical mixing. This

method offers an approximate method which, with enough KL terms kept in truncation,

is more accurate than the other approximate methods currently used for this prob-

lem type. If the number of KL terms required is sufficiently small, the discontinuous

KL method can solve quantities of interest more efficiently than random sampling. The

benefits of this method extend beyond materials with Markovian statistical mixing, how-

ever, since the method is applicable to processes with other covariance functions. The

method may therefore be able to provide solutions to mixing problems which currently

do not have a statistically faithful solution method.

Though this work has produced useful results, it has also opened up many questions

which would serve as worthwhile topics for further investigation.
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The error analysis techniques outlined and demonstrated here help invaluably in de-

termining error sources, and total error in a system. The value of this analysis may

translate well into development of an adaptive algorithm which takes advantage of error

bounds and knowledge of the extra computational cost of changing system parameters

to smartly choose which parameters among the various methods being used to increase

to most efficiently solve the problem.

The lognormal KL modeling proved effective in modeling many material properties for

one material. It may be of interest to model the density profile of, or another quality of,

more than one material. It would be easy to model two materials and assume that they

are independent of one another, but this is rarely, if ever, true in nature. Development

of a way to handle partial or full correlation between two or more random processes

using the lognormal transformation would increase the applicability of this method to

more problem types.

While the discontinuous KL method has already proved to be useful for 1D problems

with Markovian mixing, this method contains perhaps the most obvious next steps for

further investigation. First of all, a limiting factor so far has been computing Gaus-

sian covariance values near one. Better ways for computing these values should be

investigated, as evaluation of covariance values closer to one would greatly expand the

number of problems this method would be effective in solving. Additionally, the prob-

lems that would become available for solution are those for which this method tends to

excel–problems with large correlation lengths which resultantly require few KL terms.

Especially following a better way to evaluate covariance values near one, a more rigorous

investigation of solutions using this method against the Adams, Larsen, and Pomran-

ing benchmark suite would be of value. Errors should be more carefully understood,

and additional transport results generated for comparison against the benchmark and

the other approximate methods. The apparent non-monotonic convergence of solutions

generated using stochastic collocation should be investigated further and understood

such that the utility of quadrature methods applied over the discontinuous KL random

variables can be better understood. The method could be investigated for use with ma-

terials mixed according to other material index mixing statistics, and thus be applied to

a much wider set of problems. The method could be investigated in 2D or 3D, improving

the applicability of the method to more problem types.
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Several further investigations of value can be performed over the SC or PCE solution

methods and applied to the continuous and/or the discontinuous method. For example,

dimension reduction techniques could be applied to the KL terms to determine the error

contribution not only of individual terms, but of sets of terms. This may allow for more

accurate and therefore efficient truncation. Sparse collocation grids could be used to

improve the efficiency of the stochastic collocation implementation. In a related fashion

a Lagrange polynomial-based PCE would be of interest, allowing collocation nodes to

have much more freedom and thus be able to be more optimally placed. Sometimes

quantities of interest are not well characterized by moments of a response, but by values

like the maximum or minimum possible value, or other qualities of the response PDF.

It may be of value to investigate other QoIs based on qualities of the PDF, and measure

convergence error as a function of some measure of PDFs. Additionally, straightforward

implementation of the PCE can create surrogate models which allow for negative val-

ues, and in some applications this is unphysical. A positive-preserving transformation

could be investigated for use with the PCE models of the response such as a lognormal

transformation.

The physical solver, Monte Carlo with Woodcock sampling, also provides a potential

source for efficiency gains. This algorithm may be able to be made more efficient if

distance to collision calculations are limited to portions of the geometry near the par-

ticle for which the magnitude of the cross section does not significantly change. This

would reduce the number of rejections per accepted particle interaction and improve the

efficiency of the implementation.
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Generation of

Gaussian-distributed Random

Samples

Different portions of this work were implemented in either Python 2.7 or modern Fortran.

Packages are easily accessible for generating Gaussian-distributed random samples in

Python 2.7. We used, at various times, “random.gauss()”, available in the standard

Python 2.7 distribution or “numpy.random.randn()”, available in the “numpy” package.

Packages also exist for generation of Gaussian-distributed random samples in Fortran.

Instead of using such a package, we chose to write our own functions for Gaussian-sample

generation. We generated Gaussian-distributed variables using the inverse sampling

method and a Box-Muller transform. The Box-Muller transform is computationally

faster, so in most cases we elect using it, though the derivation of the inverse sampling

method is useful in understanding how to sample from a distribution. Additionally, the

direct mapping of uniformly distributed variables to Gaussian-distributed variables can

be a useful property for applications slightly beyond the scope of this work.
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A.1 Inverse Sampling for Gaussian-distributed Samples

We integrate over the standard Gaussian PDF such that the cumulative probability of

the Gaussian distribution to value z is equal to the cumulative probability of uniformly

distributed x:

η =

∫ z

−∞

1√
2π

exp

[
− z′2

2

]
dz′. (A.1)

We substitute using t′2 = z′2

2 and re-write Eq. (A.1) as

η =
1

2

2√
π

∫ z√
2

−∞
exp

[
− t′2

]
dt′. (A.2)

We integrate for either z√
2
< 0 or z√

2
> 0 and discover in each case

η =
1

2

2√
π

(
−
∫ −∞

0
exp

[
− t′2

]
dt′ +

∫ z/
√

2

0
exp

[
− t′2

]
dt′
)
. (A.3)

We then utilize the error function and its inverse [74]–

erf(t) =
2√
π

∫ t

0
exp

[
− t′2

]
dt′; erf(∞) = 1; erf(−∞) = −1 (A.4)

–to solve for the Gaussian-distributed variable z as a function of the uniformly dis-

tributed variable η:

z =
√

2erf−1(2η − 1). (A.5)

If we were integrating over the basis function exp
[
− z′2

]
instead of a standard normal

probability distribution, Eq. (A.1) and the solution for z, Eq. (A.5), would instead be:

η =

∫ z

−∞
exp

[
− z′2

]
dz′, and (A.6a)

z =erf−1(2η − 1). (A.6b)
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A.2 The Box-Muller Transform

The Box-Muller [76] transformation maps a two-dimensional uniform distribution to

a bivariate normal distribution. Two psuedo-random numbers generated from a uni-

form distribution over zero to one can therefore be transformed to two psuedo-random,

Gaussian-distributed random variables. Uniformly distributed random samples η1 and

η2 are transformed to Gaussian-distributed random variables z1 and z2 according to

z1 =
√
−2 ln η1 cos(2πη2), and (A.7a)

z2 =
√
−2 ln η1 sin(2πη2). (A.7b)
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Quadrature Rules

B.1 Brief Survey of Quadrature Rules

Table B.1 compares several polynomial-based quadrature rules.

Table B.1: Selected Quadrature Rules

Quadrature Rule
Associated

Polynomial
p(ξ) Support Nested?

Gauss-Legendre (GL) Legendre 1
2 [−1, 1] no

Gauss-Patterson (GP) Legendre 1
2 [−1, 1] yes

Gauss-Hermite (GH) Hermite (physicists’) exp[−ξ2] (−∞,∞) no

Genz-Keister (GK) Hermite (physicists’) exp[−ξ2] (−∞,∞) yes

Clenshaw-Curtis (CC) Chebyshev variable variable yes

We use GL and GH quadrature rules [77] in this work and introduce them here. We

do not use GP [78], GK [79], or CC [80, 81] quadrature, but include them for brief

discussion in Section B.2, as any of them would be logical choices for extension of this

work.

Gaussian quadratures choose quadrature nodes at roots of Askey polynomials that cor-

respond to the relevant basis function. They integrate polynomials of degree 2Q − 1

exactly over that density, where Q is the quadrature order. They do not exactly in-

tegrate other functions over the basis function, but may still be the preferred option.
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Quadrature weights sum to a value related to the integral of the basis function, and vary

depending on what technique is used to generate the weights.

Gauss-Legendre (GL) quadrature is based on Legendre polynomials and integrates over

a basis function which is a uniform probability density function on [−1, 1]. Through

mapping, GL quadrature can be used to integrate over [a, b]. We discuss this mapping

in Section B.3.

Gauss-Hermite (GH) quadrature is based on Hermite polynomials and integrates over

a Gaussian basis function on [−∞,∞]. GH quadrature is defined to integrate over a

Gaussian basis function often convenient in physics, exp[−ξ2], and uses the “physicists’”

Hermite polynomials to define quadrature nodes. In this work we integrate over the

standard normal Gaussian 1√
2π

exp
[
− ξ2

2

]
basis function. This basis function is based

on the “probabilists’” Hermite polynomials. We discuss the required translation of GH

quadrature for use over the standard normal basis function in Section B.4.

B.2 Nested Quadratures

At times it may be advantageous to increase a quadrature order and integrate a function

more exactly. This operation is made more efficient if solutions of the underlying prob-

lem are reused, which requires reuse of quadrature nodes when increasing the quadra-

ture order. Quadrature rules that reuse quadrature nodes at higher orders are called

“nested” quadratures. The Gauss-Kronrod quadrature is a Q+ 1 point extension to GL

quadrature. It reuses all nodes from a Q-ordered GL quadrature, and chooses Q + 1

new nodes to optimally integrate a polynomial while reusing the existing nodes. It can

be used to offer an error estimate of a Q-ordered GL quadrature. The Gauss-Kronrod

approach has been generalized to add Q+1 nodes optimally to Gauss-Legendre or Gauss-

Kronrod quadrature of order Q. This more general nested quadrature is called either

Gauss-Patterson (GP) or Kronrod-Patterson quadrature. Gauss-Patterson quadrature

is capable of building on itself and the underlying Gauss-Legendre quadrature an infi-

nite number of times, and is thus a “fully-nested” quadrature rule. Genz-Keister (GK)

quadrature is a similar fully-nested extension of Gauss-Hermite quadrature. Fully-nested
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quadratures are especially useful for convergence studies in which a quantity of inter-

est is calculated repeatedly with increasing quadrature orders. The reuse of solutions

calculated at all existing nodes can save considerable computational time.

Clenshaw-Curtis quadrature is a fully-nested quadrature based on Chebyshev polyno-

mials. Though a given order of GL or GH quadrature integrates polynomials more

exactly than CC quadrature of the same order, Gaussian quadratures do not necessarily

integrate other functions more exactly. Additionally, CC quadrature does not require

an initial quadrature scheme to begin nesting from: Its nodes are always in the same

locations whereas the placement of fully-nested GP and GK quadrature nodes rely on

initial GL or GH schemes from which to begin the nesting process. In part for these

reasons, CC may be the preferred quadrature for an application in spite of an inferior

optimality for non-nested, polynomial integration. We do not use CC quadrature in this

work, though it may useful, especially if we desire to perform convergence studies on

some of the larger problems in this work.

B.3 Mapping of Gauss-Legendre Quadrature to Arbitrary

Finite Support

Gauss-Legendre quadrature nodes integrate over [−1, 1]. To integrate over [a, b], we

translate the value of each node ξq to ξ′q:

ξ′(q) =
b− a

2
ξ(q) +

b+ a

2
. (B.1)

The integral of the basis function determines what quadrature weights sum to:

Q∑
q=1

w(q) =

∫ b

a
p(ξ)dξ. (B.2)

Gauss-Legendre weights given by Python package numpy.polynomial.legendre.leggauss()

are based on the weight function p(ξ) = 1 and an integral taken over [−1, 1] and sum to

2. We define our weight function p(ξ) = 1
b−a and wish to integrate over [a, b] such that

our weights sum to 1 for any choice of a and b. We normalize w(q), the weights given by

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.polynomial.legendre.leggauss.html
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numpy.polynomial.legendre.leggauss(), to w′(q):

w′(q) =
b− a

2
w(q). (B.3)

B.4 Mapping of Gauss-Hermite Quadrature to the Stan-

dard Normal Basis Function

Gauss-Hermite quadrature integrates function f(ξ) over Gaussian basis function p(ξ) =

exp[−ξ2]:

E[f(ξ)] =

∫ ∞
−∞

f(ξ) exp
[
− ξ2

]
dξ ≈

Q∑
q=1

w(q)f(ξ(q)). (B.4)

We desire integration over exp
[
− ξ2

2

]
, and choose to multiply our basis function by 1√

2π
,

yielding p′(ξ) = 1√
2π

exp
[
− ξ2

2

]
, so that the integral of the basis function is equal to 1:

∫ b

a
p′(ξ)dξ =

∫ ∞
−∞

1√
2π

exp

[
− ξ2

2

]
dξ = 1. (B.5)

Since the integral of the basis function is 1, the basis function can also be a probability

density. We must map GH nodes and weights defined over basis function p(ξ) = exp[−ξ2]

and given by Python package numpy.polynomial.hermite.hermgauss(), to GH nodes and

weights defined over a standard normal basis function p′(ξ) = 1√
2π

exp
[
− ξ2

2

]
.

We begin with the integral over which GH quadrature is typically defined:

∫ ∞
−∞

exp
[
− ξ2

]
f
(
ξ
)
dξ. (B.6)

We substitute ξ′ =
√

2ξ:

∫ ∞
−∞

exp

[
− ξ′2

2

]
f

(
ξ′√
2

)
dξ′√

2
. (B.7)

We normalize the integral to 1 by multiplying by 1√
π

:

∫ ∞
−∞

1√
2π

exp

[
− ξ′2

2

]
f

(
ξ′√
2

)
dξ′. (B.8)

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.polynomial.hermite.hermgauss.html#numpy.polynomial.hermite.hermgauss
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We have constructed the form desired for our integration and can apply the same map-

ping to quadrature nodes and weights:

ξ′(q) =
√

2ξ(q) (B.9a)

w′(q) =
w(q)

√
π
. (B.9b)
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Appendix C

Orthogonal Polynomials and

Associated Quadrature Rules

C.1 Survey of Selected Askey Polynomials

Askey and Wilson [46] identified a large set of orthogonal, hypergeometric polynomials

over various basis functions. We display some of them in Table C.1 [44, 46, 74].

Table C.1: Example Askey Polynomials and Distributions

Polynomial Distribution Basis Function Support

Γ (ξ) ξ p(ξ)

Legendre uniform 1
2 [−1, 1]

Jacobi beta (1− ξ)α(1 + ξ)β [−1, 1]

Laguerre gamma exp[−ξ] [0,∞)

Hermite (probabalists’) standard Gaussian exp
[
− ξ2

2

]
(−∞,∞)

Hermite (physicists’) Gaussian exp[−ξ2] (−∞,∞)

We note that both forms of the Hermite polynomial have a Gaussian basis function [74].

The probabilists’ Hermite polynomial, however, is orthogonal over a standard normal

distribution
(
p(ξ) = 1√

2π
exp

[
− ξ2

2

])
. When the basis function is equal to a standard

normal, the basis function is zero mean and unit variance, vis., E[p(ξ)] = 0 and V[p(ξ)] =

179
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1. Except as specified, namely in Appendix C, the Hermite polynomials used in this

work are the probabilists’ form of Hermite polynomials.

C.2 Askey Polynomial Orthogonality

Each Askey polynomial is orthogonal over its corresponding basis function:

∫
ξ
Γi(ξ)Γj(ξ)p(ξ)dξ =

1

a
δij . (C.1)

As long as the underlying basis functions are independent, multivariate Askey polyno-

mials factor into the product of univariate Askey polynomials as in Eq. (3.41) and we

can express the multidimensional Askey polynomial orthogonality as a product of the

one-dimensional relationship in Eq. (C.1):

∫
ξ1

· · ·
∫
ξD

Φi(ξ)Φj(ξ)p(ξ)dξ =
1

aj
δij. (C.2)

In this work we utilize Legendre polynomial orthogonality. We write Eqs. (C.1) and (C.2)

more explicitly for Legendre polynomials:

∫ 1

−1
Pi(ξ)Pj(ξ)

1

2
dξ =

1

2j + 1
δij =

1

a
δij ; (C.3)

∫ 1

−1
· · ·
∫ 1

−1
Pi1(ξ1)Pj1(ξ1) · · ·PiD (ξD)PjD (ξD)

(
1

2

)D
dξ1 · · · dξD

=
1

(2j1 + 1) · · · (2jD + 1)
δi1j1 · · · δiDjD =

1

aj
δij.

(C.4)

We also utilize the probabilists’ Hermite polynomials. We write Eqs. (C.1) and (C.2)

more explicitly for Hermite polynomials over a standard normal basis function:

∫ ∞
−∞

Hi(ξ)Hj(ξ)
1√
2π

exp

[
− ξ2

2

]
dξ = j! δij =

1

a
δij ; (C.5)

∫ ∞
−∞
· · ·
∫ ∞
−∞

Hi1(ξ1)Hj1(ξ1) · · ·HiD (ξD)HjD (ξD)

(
1√
2π

)D
exp

[
− ξ21

2

]
· · · exp

[
− ξ2D

2

]
dξ1 · · · dξD

= j1! · · · jD! δi1j1 · · · δiDjD =
1

aj
δij.

(C.6)
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Table C.2 summarizes orthogonality parameters used in this work. Note Legendre poly-

nomials are only orthogonal over [−1, 1]; GL quadrature can be mapped to [a, b].

Table C.2: Legendre and Probabilists’ Hermite Polynomial Orthogonality Parameters

Polynomial Γ (ξ) p(ξ) 1
a Support

Legendre P (ξ) 1
2

1
2j+1 [−1, 1]

Hermite H(ξ) 1√
2π

exp
[
− ξ2

2

]
j! (−∞,∞)



www.manaraa.com

Appendix D

Semi-infinite Slab, Constant

Scattering Ratio Reflectance

Benchmark Script

#!/ usr/bin/env python

import numpy as np

import random

#Input

numParts = 1000000 #number of particles

scatrat = 0.5 #constant scattering ratio

#Basic transport driver

i,reflections = 0,0 # initialize counter and tally

while True: #cycle through particles

# initialize particle

x,mu = 0.0 ,1.0 # initialize particle state

#simulate particle

while True:

dc = -np.log(random.random ()) #distance to collision , sig_t = 1.0

x += dc*mu #effect particle streaming

if x<0.0: #tally reflection events

reflections += 1

break

if random.random()>scatrat: break #if absorb , kill particle history

else: mu = random.uniform ( -1.0 ,1.0) #if scatter , sample new mu

#advance to next particle or terminate particle history loop

if i== numParts: break # terminate MC

i += 1

182
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#Print reflectance

print ’reflectance: {:14.12f}’.format( float(reflections )/ numParts )

Listing D.1: Minimalist Monte Carlo Semi-infinte Slab, Constant Scattering Ratio

Reflectance Python Script
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